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Mathematical Modeling of Population Genetics

Haley Baker
Southern Adventist University

April 21, 2014

1 Introduction

Aristotle conducted the first known studies on genetics in his work Generation of
Animals(9). In 170 A.D. Galen published On the Natural Faculties followed by
On Seed in 180 A.D.(6). Many others in the following centuries contributed to
the study of genetics. These included Descartes, Harvey, Hooke, Swammerdam,
and Paley(6). In 1859, Darwin became arguably the greatest contributor to ge-
netics by publishing his theory of evolution in his book The Origin of Species(9).
Up to this point, no genetic experiments had been attempted. In 1894 Roux
conducted the first actual science experiments on genetics using frog eggs(9).
Mendel, known as the father of genetics, began his famous pea experiment in
1856. Since then, countless others added to the study of genetics. Current
studies include heterozygosity in white-tailed deer by Kekkonen(8), adaptation
of DNA by Orr(10), sex ratio evolution(1).
This paper focuses on modeling the quantitative factors of population ge-

netics. We begin modeling Mendel’s work and building on this work by adding
selective variances to the model. This generated data adequately matches prior
data from population genetics experiments.

2 Preliminaries

This paper uses the following biological terms.

Definition 1 (7)Cells that fertilize and replicate to form a new organism are
called gametes.

Examples of gametes include the female ovum and the male sperm of hu-
mans. This paper uses the following biological definitions relating to DNA.

Definition 2 (5)The resulting cell from the union of the two gametes is called
a zygote.

Definition 3 (5)Haploid cells contain only one set of DNA in an unpaired chro-
mosome.
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Definition 4 (5)Diploid cells contain two sets of DNA in a paired chromosome.

Gametes are haploid cells whereas zygotes are diploid.

Definition 5 (5)A structure in the nucleus of a cell that carries the DNA of
the organism is called a chromosome.

Chromosomes contain all the DNA for an organism. Scientist study chro-
mosomal characteristics for new discoveries in genetics.

Definition 6 (5)The fundamental unity of heredity is called a gene

Definition 7 (5)The position of the gene on the chromosome is called a locus.

Definition 8 (3)Different types of genes are called alleles.

The alleles from each gamete may differ from each other. Both parents each
give one set of chromosomes to the offspring. The chromosome’s alleles need not
be the same. If the alleles differ, the resulting cell is considered a heterozygote.
If the alleles do not differ, the resulting cell is considered a homozygote.

Definition 9 (3)Homozygotes occur when both genes, or alleles, are the same

Definition 10 (3)Heterozygotes occur when both genes, or alleles, are different

Britton gives the following definitions for genotypes and phenotypes.

Definition 11 (3)The term genotype refers to the genetic make-up of an or-
ganism.

Definition 12 (3)The physical traits shown in an organism is called the phe-
notype

The alleles do not necessarily define the physical characteristics of an organ-
ism. The dominance of traits determines if the traits are shown or not shown.
The dominant trait shows in mixed alleles, whereas the recessive trait fails to
show.

Definition 13 (3)Dominant traits are expressed in a heterozygote genotype.

Definition 14 (3)Recessive trait are not expressed in a heterozygote genotype.

Example 15 The brown eye color is considered to be the dominant trait between
brown and blue eyes. So if a person had a heterozygote genotype that contained
both brown and blue eyes, only brown shows. In order to have a phenotype of
blue eyes, a person needs a homozygote genotype with only the recessive trait of
blue eyes.
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Example 16 From previous data, polydactyly, or multi-fingeredness, is ex-
pressed in heterozygote situations, thus the trait is dominant. So a parent with
a genotype including the trait of polydactyly can expect half of her children to
express the trait as well.

Definition 17 (3)The probability a trait will survive based on its ability to breed
is called survivorship.

Definition 18 (3)Any generation that follows after the 1st is called a filial
generation.

Definition 19 (3)x-linked genes only affect the x-chromosome.

Definition 20 (3)Absolute fitness is determined by the favorable reproductions
of a specific genotype.

Definition 21 (3)Loci with more than one allele in the population are called
gene polymorphisms.

This paper uses the following mathematical terms.

Definition 22 (2)Two events A and B are said to be independent if the oc-
currence or nonoccurrence of the first event does not affect the occurrence or
nonoccurrence of the second event.

Definition 23 (4)A solution ψ of a system

x′ = F (t, x)

which is defined for t ≥ 0 is said to be stable (a steady state) if, given any ε > 0,
there exists a δ > 0 such that any solution ϕ of the system satisfying

|ϕ(0)− ψ(0)| < δ

satisfies
|ϕ(t)− ψ(t)| < ε

where t ≥ 0. A solution ψ is said to be an interior steady state if ψ (0) lies
inside the solution region of the system. A solution ψ is said to be an exterior
steady state if ψ (0) lies on the boundary of the solution region.

The following definitions relate to the fitness of the genotype population.

Definition 24 (3)Relative fitness is determined by the ratio of absolute fitness
to the absolute fitness of a theoretical genotype. This fitness can be density-
dependent or frequency-dependent, i.e. determined by the size and makeup of
the genotype population, and environment.

Definition 25 (3)The mean fitness wp of A is defined by taking a weighted
mean over all the homozygotes and half the heterozygotes carrying the allele A.
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3 Primary Results

In the first subsection, a model of Mendel’s work with peas is developed. The
results of this model are compared to Mendel’s results. The second subsection
expands this model to include selective variances.

3.1 Mendel’s General Model

The first goal is to derive a basic formula for determining the frequency of gamete
unions. The basic assumptions include independence of sex ratio and fertility,
randomness of mating, survivorship, and the lack of mutation and migration. p
defines the frequency of of allele A in a population and q defines the frequency
of allele B in the same population. Thus it follows that

p+ q = 1

Now define x, y, z to be the frequencies of the genotype AA,AB, and BB re-
spectively. Since the AB genotype defines a heterozygote, half of the frequency
will go towards counting for the A frequency and the other half will go towards
the B frequency and so

p = x+
1

2
y

q = z +
1

2
y

A punnett square summarizes the frequencies.

A(p) B(q)

A(p) p2 pq
B(q) pq q2

From the punnett square, the formula for subsequent generations emerges as

pn+1 = p2n +
1

2
(2pnqn )

with n representing the generation number. Then it follows

pn+1 = p2n +
1

2
(2pnqn) = p2n + pnqn = pn (pn + qn) = pn (1) = pn

Thus pn holds independent of pn+1 and from now on will only be referred to as
p. Similarly

qn+1 = q2n +
1

2
(2pnqn) = q2n + pnqn = qn (qn + pn) = qn (1) = qn
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The Hardy-Weinberg Law follows from this and states allele frequencies p and
q remain unchanged from generation to generation. Therefore the filial genera-
tions hold the same as in the parental generation and

x = p2

y = 2pq

z = q2

for generations F1 onward.
Mendel’s second law states that traits in one pair of chromosomes are inde-

pendent of different traits in another pair of chromosomes.

Example 26 Mating a round (R) yellow (Y ) pea and a wrinkled (W ) green
(G) pea with round and yellow being dominant gives an example of Mendel’s
second law. Let F0 = RRY Y +WWGG represent the parent generation. The
first generation, or F1, equals RWYG and, since RY holds dominant for all,
exhibits RY phenotype. Let F2 be the following table.

F2 =

RY RG WY WG
RY RY RY RY RY
RG RY RG RY RG
WY RY RY WY WY
WG RY RG WY WG

where the proportions of the phenotypes are defined as

RY =
9

16
;RG =

3

16
;WY =

3

16
;WG =

1

16

Now using Hardy-Weinberg equilibrium we arrive at the following theorem.

Theorem 27 A population is in Hardy-Weinberg equilibrium if and only if y2 =
4xz assuming x, y, and z are the usual genotype frequencies.

Proof. Let p and q represent the frequencies of alleles A and B respectively
where p = x+ 1

2y and q = z + 1
2y. Note that p+ q = 1.

(→) Assume a population is in Hardy-Weinburg equilibrium and thus

x = p2

y = 2pq

z = q2

Then it follows that
4xz = 4p2q2 = (2pq)

2
= y2

as desired.
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(←) Assume y2 = 4xz. By hypothesis since p+ q = 1 it follows that

x+ y + z =

(
x+

1

2
y

)
+

(
z +

1

2
y

)
= p+ q = 1

⇒ y = 1− x− z

By substitution we see

p2 =

(
x+

1

2
y

)2
= x2 + xy +

1

4
y2

= x2 + xy + xz

= x2 + x (1− x− z) + xz
= x2 + x− x2 − xz + xz
= x

Similarly

q2 =

(
z +

1

2
y

)2
= z2 + yz +

1

4
y2

= z2 + yz + xz

= z2 + z (1− x− z) + xz
= z2 + z − xz − z2 + xz
= z

and by substitution of y2 = 4xz

2pq = 2

(
x+

1

2
y

)(
z +

1

2
y

)
= 2

(
xz +

1

2
yz +

1

2
xy +

1

4
y2
)

= 2

(
1

4
y2 +

1

2
yz +

1

2
xy +

1

4
y2
)

= 2

(
1

2
y2 +

1

2
yz +

1

2
xy

)
= y2 + yz + xy

= y(y + z + x)

= y (1)

= y

Thus the definition of the Hardy-Weinburg equilibrium is fulfilled as desired.
We proceed with an example.
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Example 28 Assume an example of blood types in England produces the fre-
quencies of A−32.1%, B−22.4%, AB−7.1%, and O−38.4%. First a Punnett
square shows the possible blood types:

A B O
A A AB A
B AB B B
O A B O

Solving with the genotype frequencies,

B = q2 + 2qr

O = r2

⇒ r =
√
O =

√
38.4% = 62.0%

B +O = q2 + 2qr + r2

= (q + r)
2

⇒ q + r =
√
B +O =

√
22.4% + 38.4% = 78.0%

q = (q + r)− r = 78.0%− 62.0% = 16.0%
r + q + p = 1

⇒ p = 22.0%

A = p2 + 2pr

AB = 2pq

and so

O = r2 = (62.0%)
2
= 38.4%

B = q2 + 2qr = (16.0%)
2
+ 2 (16.0%) (62.0%) = 22.4%

A = p2 + 2pr = (22.0%)
2
+ 2 (22.0%) (62.0%) = 32.1%

AB = 2pq = 2 (22.0%) (16.0%) = 7.0%

Now to compare data we see

Data Calculated
A 32.1% 32.1%
B 22.4% 22.4%
AB 7.1% 7.0%
O 38.4% 38.4%

The χ2 Goodness of Fit test gives χ2 = 0.00142857 with a P-Value greater than
0.995. This means that the given data proves consistent with the random mating
assumption.

According to positive assortative mating, mating occurs more frequently
with that of the same genotype. Let x, y, z represent the frequencies of mating
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of AA × AA,AB × AB,BB × BB. The genotypes AA,AB,BB with their
frequencies 1 : 2 : 1 result from the mating of AB ×AB. Then it follows

AA = xn =
1

4
(total population)

AB = yn =
1

2
(total population)

BB = zn =
1

4
(total population)

Thus

yn+1 =
1

2
yn

yn+2 =
1

2
yn+1

=

(
1

2

)2
yn

...

yn+a =

(
1

2

)a
yn

as a → ∞, yn+a → 0 and thus the heterozygote population will eventually
disappear and only homozygotes would remain. Then it follows that

pn = xn +
1

2
yn

⇒ pn+1 = xn+1 +
1

2
yn+1

= xn +
1

4
yn +

1

2

(
1

2
yn

)
= xn +

1

2
yn

= pn

As n approaches infinity yn approaches zero and thus

xn = pn

Similarly

qn = zn +
1

2
yn

⇒ qn+1 = zn+1 +
1

2
yn+1

= zn +
1

4
yn +

1

2

(
1

2
yn

)
= zn +

1

2
yn

= qn
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As n approaches infinity yn approaches zero and thus

zn = qn

And thus the heterozygote population no longer exists and the two remaining
homozygote populations do not interbreed.
The Hardy-Weinberg law fails to hold when considering X-linked genes. Con-

sider the following example.

Example 29 Assuming colorblindness holds as a X-linked gene and affects 1
in 20 Caucasian males, the frequency of colorblindness in Caucasian females
becomes 1 in 400.

Theorem 30 The Hardy-Weinberg law does not hold for X-linked genes.

Proof. Under the Hardy-Weinberg assumptions, for males with genotypes A
and B let the frequencies be defined as m and n and let

m′ = p

n′ = q

where p, q represent corresponding female frequencies. We focus on the female,
since the male gives the X-linked gene. Let

x′ = mp

y′ = mp+ np

z′ = np

Then

p′ = x′ +
1

2
y′ = mp+

1

2
(mp+ np) = m

(
p+

1

2
q

)
+
1

2
np

p′′ = m′
(
p′ +

1

2
q′
)
+
1

2
n′p′ = p

(
p′ +

1

2
q′
)
+
1

2
qp′

= p

(
p′ +

1

2
(1− p′)

)
+
1

2
(1− p) p′

= p

(
1

2
+
1

2
p′
)
+
1

2
p′ − 1

2
pp′

=
1

2
p+

1

2
pp′ +

1

2
p′ − 1

2
pp′

=
1

2
p′ +

1

2
p

Solving this equation we get

pn =
2

3
p0 +

1

3
m0 +

1

3
(p0 −m0)

(
−1
2

)n
Taking the limit as n→∞, pn approaches to the initial frequency of A.
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3.2 Selective Variances

Hardy-Weinberg law fails to account for selection and hence there is no evolution
under this law. To account for selection, disregard the former assumption of
equally fit alleles. The relative fitness of the alleles depends on many factors
including density and frequency. We must still assume random mating holds
as an assumption to validate the use of a punnett square. Thus the allele
frequencies remain pn and qn in a population n and the frequencies xn, yn, zn
are given by

xn = p2n

yn = 2pnqn

zn = q2n

Let selection variance be in the ratio wx : wy : wz. For AA,AB,BB we have
wxp

2
n : 2wypnqn : wzq

2
n. And we can now have the ratio

wxp
2
n + wypnqn : wypnqn + wzq

2
n

Using the frequencies

pn+1 = f(pn) =
(wxpn + wyqn) pn

wxp2n + 2wypnqn + wzq
2
n

=
(wxpn + wyqn) (pn + qn)pn
wxp2n + 2wypnqn + wzq

2
n

=
((wxpn + wyqn) pn + (wxpn + wyqn) qn) pn

wxp2n + 2wypnqn + wzq
2
n

=

(
wxp

2
n + wyqnpn + wxpnqn + wyq

2
n

)
pn

wxp2n + 2wypnqn + wzq
2
n

=
wxp

3
n + wyqnp

2
n + wxp

2
nqn + wypnq

3
n

wxp2n + 2wypnqn + wzq
2
n

=
wxp

3
n + 2wyp

2
nqn + wzpnq

2
n + wxp

2
nqn − wyp2nqn + wyqnp2n + wypnq2n − wzpnq2n

wxp2n + 2wypnqn + wzq
2
n

= pn + pnqn
(wx − wy) pn + (wy − wz) qn
wxp2n + 2wypnqn + wzq

2
n

This defines the Fisher-Haldane-Wright Equation. Find the mean fitness of A:

wp =
wxp

2 + wypq

p2 + pq
=
p(wxp+ wyq)

p(p+ q)
=
(wxp+ wyq)

(1)
= wxp+ wyq

Similarly, the following equation shows the mean fitness of B:

wq =
wypq + wzq

2

pq + q2
=
q(wyp+ wzq)

q(p+ q)
=
(wyp+ wzq)

(1)
= wyp+ wzq
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Now, the overall mean fitness becomes

w = wxp
2 + 2wypq + wzq

2

= wxp
2 + wypq + wypq + wzq

2

= p(wxp+ wyq) + q(wyp+ wzq)

= pwp + qwq

From dropping the n’s in the previous equation and replacing the n + 1 with
the prime notation to denote the next generation, we arrive at

pn+1 = f(pn) =
(wxpn + wyqn) pn

wxp2n + 2wypnqn + wzq
2
n

=
wpp

w
= p′

Now

δp = p′ − p
=

wpp

w
− p

=
wpp

w
− pw

w

=
wpp− pw

w

=
(wp − w) p

w

=
αpp

w

where αp = wp − w defines the mean excess fitness. Further, we see

δp = p′ − p

=
(wp − w) p

w

=
(wp − (pwp + qwq)) p

w

=
(wp − pwp − qwq) p

w

=
(wp (1− p)− qwq) p

w

=
(wp (q)− qwq) p

w

= pq
wp − wq

w

= pq
(wxp+ wyq)− (wyp+ wzq)

w

= pq
wxp+ wyq − wyp− wzq

w

= pq
(wx − wy) p+ (wy − wz) q

w
(1)
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To find steady state p = 0, assume wy < wz and w > 0. Assuming eq. (1)
we know

δp = pn+1 − pn = pq
(wx − wy) p+ (wy − wz) q

w

Case 31 If wx < wy then δp < 0.

Case 32 Assume wx > wy. Consider p 6= 0 and q 6= 0. Since q = 1− p

0 = (wx − wy) p+ (wy − wz) (1− p)
= p (wx − wy − wy + wz) + (wy − wz)
⇒ wz − wy = p (wx − 2wy + wz)

⇒ p∗ =
wz − wy

wx − 2wy + wz

Note f(p∗) = p∗. Since δp∗ = 0 then p∗ exists as an interior stable solution.

Case 33 If 0 < p < p∗ then δp < 0 since wx − wy > 0, p > 0 implies

0 < (wx − wy) p < (wx − wy) p∗

Then

(wx − wy) p+ (wy − wz) q < (wx − wy) p∗ + (wy − wz) q∗ = 0

Therefore δp < 0 for p < p∗ when wx > wy and δp < 0 if wx < wy. Thus the
iterations are decreasing under these conditions and so p = 0 is a steady state
solution.

Similarly consider p = 1. Assume wy < wz. Let p < 1. Then we need δp > 0.
So

(wx − wy) p+ (wy − wz) q < 0
Since we need wy − wz to approach 0 we must have wx > wy to make p = 1
true. This does not mean wy > wz.
Consider p∗ ∈ (0, 1). Remember

p∗ =
wz − wy

wx − 2wy + wz
=

wz − wy
(wx − wy) + (wz − wy)

Case 34 If wy > wz and wy > wx then p∗ 6= 0 and p∗ > 0 and p∗ < 1 since
wz − wy < 0 and wx − wy < 0 and wz − wy < 0. Thus

0 <
wz − wy

(wx − wy) + (wz − wy)
< 1

Case 35 Let wy < wz. If wy < wz then p∗ 6= 0 and p∗ > 0 and p∗ < 1 since
wz − wy < 0 and wx − wy > 0 and wz − wy > 0. Thus

0 <
wz − wy

(wx − wy) + (wz − wy)
< 1
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Under these conditions, p∗ is an interior steady state solution.
We now proceed with an example.

Example 36 Consider Sickle cell anemia. Allele B denotes the disease and
allele A denotes normal. Organisms with the genotype AB do not have the
disease and have immunity to malaria. Organisms with the genotype BB have
the disease and malaria. Organisms with the genotype AA do not have the
disease and do not have immunity to malaria. With the relative frequencies of
AA,AB,BB being 1, 1 + s, 1− t respectively, it is shown the

p′ = p+ pq
(wx − wy) p+ (wy − wz) q
wxp2 + 2wypq + wzq2

= p+ pq
(1− (1 + s)) p+ ((1 + s)− (1− t)) q

1p2 + 2 (1 + s) pq + (1− t) q2

= p+ pq
−sp+ (s+ t) (1− p)

p2 + 2pq + 2spq + q2 − tq2

= p+ pq
−sp+ s+ t− sp− tp

p2 + 2pq + q2 + 2spq − tq2

= p+ pq
s− 2sp+ t− tp

(p+ q)
2
+ 2spq − tq2

= p+ pq
s (1− 2p) + t (1− p)
1 + 2spq − tq2

The steady states exist at p = 0, 1, p∗ where

p∗ =
s+ t

2s+ t

Proof. Using the previous methods we see that

0 = (wx − wy) p+ (wy − wz) (1− p)
⇒ 0 = s (1− 2p) + t (1− p)
⇒ 0 = s− 2sp+ t− tp
⇒ −2sp− tp = −s− t
⇒ p (2s+ t) = s+ t

⇒ p∗ =
s+ t

2s+ t

Thus there exists an interior steady state at

p∗ =
s+ t

2s+ t

13



The cobweb map verifies the existence of a non-oscillatory steady state so-
lution at p∗.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

x

y

Example 37 If the frequency of BB = .2 and q∗ = .2 then t = .8 and p∗ = .8
and thus

p∗ =
s+ t

2s+ t
⇒ 2sp∗ + tp∗ = s+ t

⇒ 2sp∗ − s = t− tp∗

⇒ s (2p∗ − 1) = t (1− p∗)

⇒ s =
t (1− p∗)
2p∗ − 1

⇒ s =
.8 (1− .8)
2 (.8)− 1 ≈ 0.27

Thus the ratio of frequencies AA : AB : BB computes as 1 : 1.27 : 0.2 and the
chance of a person with genotype AA dying from malaria is 0.21

4 Conclusions and Future Work

This paper developed a formula for modeling the frequencies of alleles under
restrictive assumptions. From this, an application of the Hardy-Weinberg law
shows that the allele frequencies do not change throughout the generations. We
then factored in selection pressure to account for survivorship of alleles which
resulted in the Fisher-Haldane-Wright equation. Future work includes studies
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of selection pressures limited to specific alleles, studies that include mutation,
studies of evolution throughout generations, game theory, strategies of breeding,
and many others.
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