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Since the introduction of transformers, large language models have proven capable

in many natural language processing fields. However, existing systems still face

challenges in generating high-quality extractive questions. Base models and public

chatbots fall short if the question source or quantity are critical. Our contribution

is a question and answer generator for generating comprehensive, extractive

questions and answers. This approach includes fine-tuning a LLaMA 2 base model

for answer extraction (AE) and question generation (QG). We evaluate the resulting

system using common automated metrics and a manual evaluation. We find that

our system is comparable to the latest research and meets our objectives.
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Chapter 1

Introduction

This chapter introduces the motivation and goals for this thesis research. First, the

problem statement and motivation are presented, describing the need for automatic

question and answer generation for specific contexts. Next, the proposed solution

is outlined, detailing plans for a system for question and answer generation. This

chapter concludes with the objectives, limitations, delimitations, and organization

of this project.

1.1 Problem Statement and Motivation

In recent years, large language models (LLMs) like OpenAI’s ChatGPT have

demonstrated unprecedented natural language generation capabilities [1]. They

can mimic creativity, carry conversations, and tutor students in a very personalized

manner. However, their publicly available forms still struggle with comprehen-

sively generating quality questions for specific contexts.

Past research often focuses on generating questions to help teachers educate or

test their students [2, 3, 4, 5]. Other research aims to improve machine question
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answering or generation capabilities [6, 7, 8]. While some research works produce

quality results, projects undertaken to help teachers in classrooms usually generate

only a few representative questions from a larger context. Even projects that

produce databases of questions favor asking many questions about large amounts

of data over generating comprehensive questions for a single context.1

To better articulate the problem, consider a youth group near Southern Adven-

tist University that memorizes books from the Bible and then answers questions

about the studied text in a tournament. To date, the leaders of the program, includ-

ing the author of this thesis, have written thousands of precise, extractive questions

and answers to test the participants’ knowledge. Given the considerable amount

of time and labor involved in authoring these questions, automatic question and

answer generation (QAG) has obvious benefits.

Historically, many research works have performed basic question generation

(QG) by simply identifying parts of speech and sentence patterns with rule-based

algorithms [9, 10, 11, 12, 13, 14, 15, 4, 5]. Later works recognized that producing

somewhat creative, high-quality questions required more sophisticated approaches

involving neural networks [6, 7, 3, 2, 16, 17, 8, 18, 19, 20, 21, 22, 23, 24].

In 2023, large language models (LLMs) like OpenAI’s ChatGPT2 demonstrated

new natural language generation capabilities. However, their publicly available

forms still struggle to generate questions for our case study. Fortunately, some of

these transformer-based models can be further trained for specific tasks such as

QAG.

Therefore the motivation for this thesis was to automate QAG using LLMs

via fine-tuning. Our resulting models are capable of partially automating the
1For example, SQuAD offers only 1.16 questions per context.
2https://chat.openai.com/

https://chat.openai.com/
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hundreds of hours of tedious work spent writing the large quantities of questions

needed to deeply examine knowledge of specific texts.

1.2 Solution

Our solution comprises a system that can be leveraged to generate a full database

of questions and answers covering all sections of the source. Our approach explores

fine-tuning an open-source pre-trained LLM released by Meta and Microsoft, Large

Language Model Meta AI 2 (LLaMA 2)3 for QAG.

The question generator must me comprehensive. In other words, the system

must be able to produce many questions given just a few sentences of context. The

model should also be able to ask questions from various perspectives. For example,

if one question asks, ”Who performed this action?” then the model should also

pose the reverse question, ”What action did this character perform?”

There are two main methods for achieving comprehensive coverage. We will

attempt to use a combination of answer extraction (AE) and question generation

(QG), called the “pipeline” method [22]. This methods produces a robust set of

questions and answers that humans can review and use for practice or examination.

1.3 Objectives

This project’s objectives are to:

• Fine-tune LLaMA 2 on comprehensive, extractive QAG data.

• Generate two or more questions for each input (an input may range from a

sentence to a short paragraph).
3https://about.fb.com/news/2023/07/llama-2/

https://about.fb.com/news/2023/07/llama-2/
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• Achieve an average question acceptability score of 4
5 or more according to

human judges involved in the Bible memorization tournament. In this thesis,

acceptability measures how useful model output is for the Bible memorization

tournament.

• Reduce the time necessary for question authoring. This will be calculated

mathematically using the original time taken to author questions and average

acceptability scores.

• Make the model publicly available.

1.4 Limitations

Due to time and monetary constraints, this project has several limitations:

• The quality of the generated questions is constrained by the training data.

• Because the best GPUs available for this project are limited by 16GB of RAM,

this project does not experiment with larger LLaMA 2 models such as the

34B and 70B parameter models.

• Biases and limitations inherent in the model architecture and training data

may lead to problematic or unfair outputs.

• The public question generator may be limited by computing resources and

cost.

1.5 Delimitations

This project is scoped and delimited in the following ways:
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• The QAG system has been trained to generate extractive questions only.

Deductive or abstract questions will not be generated.

• The QG models’s output includes individual questions and answers only so

that the model does not have to learn to map one context to many questions.

This may make the overall generation somewhat slower.

• Manual evaluation was performed by a small set of human judges.

• Ethical implications of automating question generation were not examined.

1.6 Organization

This document is organized as follows:

• Chapter 2 presents a theoretical framework of the concepts for this thesis.

• Chapter 3 outlines our methodology for fine-tuning base models and creating

a full QAG system.

• Chapter 4 details the plans for project evaluation.

• Chapter 5 reports the results of the evaluation.

• Chapter 6, the conclusion, summarizes project objectives, the proposed

solution, and future work.
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Chapter 2

Background

This chapter presents the theoretical framework and background research utilized

in this thesis. First, the theoretical framework explains the particular concepts

used and how they are connected. The background research section examines

the progression of QG methodologies in past literature. It also explores the QAG

capabilities of popular LLM chatbots and other tools.

2.1 Theoretical Framework

This section provides a brief explanation of the key concepts used in this thesis.

Figure 2.1 summarizes the various concepts and their relationships.

2.1.1 Natural Language Processing

QAG belongs to a broad field of problems involving machines and human language.

These problems can be divided into several categories.

K. R. Chowdhary defines one category, natural language processing (NLP), as

“a collection of computational techniques for automatic analysis and representa-
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Figure 2.1: Concept map

tion of human languages, motivated by theory” [25]. NLP ranges from simpler

functionality such as spell checking to more challenging problems like the retrieval

of important information. Some NLP problems can be further categorized under

natural language understanding (NLU). NLU is a more advanced form of NLP in

which machines understand language using background information much like

humans do. NLU requires semantic information, abstract concepts, and various

modules.

Chowdhary separates natural language generation (NLG) from NLP, catego-

rizing both as branches of computational linguistics. While NLP is focused on

language analysis, NLG involves machines writing human language rather than

just reading and understanding it.

While these categories have different goals, NLG is interconnected with NLP.

To generate text, a machine must first achieve a level of NLU. Because QAG
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requires a machine to generate natural language to achieve the desired output, it

is considered part of NLG.

2.1.2 AI Models

Stanford University’s Human-Centered Artificial Intelligence (HAI) institute cites

the original definition of artificial intelligence (AI), “the science and engineering of

making intelligent machines,” coined by John McCarthy in 1955.1 This definition

relies on the definition of intelligence, which the HAI defines as the ability to learn.

Hence, it follows that artificial intelligence is identified by a machine’s ability to

learn.

In Machine Learning: An Artificial Intelligence Approach [26], Michalski et al.

introduce the necessity of this type of learning by explaining that some tasks are

simply too difficult to “laboriously program” into a computer. In other words, AI

allows computers to perform tasks that humans perform but cannot fully articulate

algorithmically. Rather than explicitly programming billions of decisions with

conditional statements (if this then do that), machine learning allows a computer

to “learn by example” and program these “decisions” automatically.

2.1.3 Machine Learning

Machine learning (ML) is a broad term for the process by which a computer

constructs an AI model to perform a task. Arthur Samuel, who coined the term

[27], defined “machine learning” as the “field of study that gives computers the

ability to learn without being explicitly programmed.” Machine learning can take
1hai.stanford.edu

https://hai.stanford.edu/sites/default/files/2020-09/AI-Definitions-HAI.pdf
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many different forms such as logistic regression, Naive Bayes, or clustering. In this

thesis, we focus on deep learning.

2.1.4 Deep Learning

Michael Nielsen provides an excellent introduction to deep learning and neural

networks in Neural Networks and Deep Learning [28]. Deep learning is a subset of

machine learning used to train neural networks. The fundamental unit of such a

network is often called a node, neuron, or perceptron (see Figure 2.2).

Figure 2.2: A perceptron with three inputs x1, x2, and x3 [28]

An artificial neuron receives input, performs a mathematical (usually linear)

transformation, and then returns some output, usually 0, 1, or some rational

number in between. By combining many of these neurons in sequence, output to

input, and in parallel, computer scientists construct neural networks (see Figure

2.3).

The importance, or weight, of the connection between two perceptrons is the

“trainable” part of the network. Deep learning uses backpropagation to adjust these

connections by constantly taking partial derivatives between a provided example

and the current state of each neuron. The neuron weights must be repeatedly tuned

until the model can perform well with problems it has never seen before. Thus, to
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Figure 2.3: Connecting many perceptrons forms an artificial neural network [28]

train a neural network using deep learning, we must possess many examples to

present to the learning model. These examples are referred to as data.

2.1.5 Data

For a model to learn based on empirical evidence, it must be shown many examples

representative of the target task. The success of this learning process relies on

the format and quality of these examples. For this thesis, we plan to utilize two

separate but similar datasets.

SQuAD

Many published QG projects based in machine and deep learning [15, 3, 2, 16, 17,

18, 19, 20, 21, 29, 23] have used the Stanford Question Answering Dataset (SQuAD)

since its publication in 2016 [30]. Due to its size and quality, we initially used

SQuAD to train our QAG model. As the name indicates, SQuAD was originally

developed for question answering (QA). Thus, in this thesis, we used an inverted

version of the dataset on HuggingFace2 that is formatted for QAG.
2https://huggingface.co/datasets/lmqg/qg_squad

https://huggingface.co/datasets/lmqg/qg_squad
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PBE

A case study for this thesis is a memorization-based youth program involving an

extractive question tournament. This program is part of the Seventh-day Adventist

church’s youth group called “Pathfinders”. Because the tournament is focused

on Bible memorization, the program is called Pathfinder Bible Experience (PBE).

Each year, the international PBE administrators designate one or more books of

the Bible for study. In preparation for each tournament level, participants train

themselves using thousands of human-written questions that cover virtually all

details of the material studied.

To fine-tune a model for this comprehensive, extractive domain, the model

must be trained on high-quality, domain-specific examples. Thus, after training on

SQuAD, we plan to further fine-tune the model on past questions obtained from

this bible memorization tournament.

These questions have been collected from current or past leaders in PBE. These

individuals comprise Lisa Myaing, Michael Babienco, Beth deFluiter, Sharon Crews,

and Ki Song. Sharon Crews’s data is primarily provided by Ted Ashton. After

cleaning and deduplication, the entire PBE dataset contained 60,609 examples,

where each example contains a reference, question, answer, answer point value,

source, and question category flags. Figure 2.4 shows a cleaned example (hidden

columns are not used in this thesis).

2.1.6 Transformers

Most QG systems before the 2010s were rule-based, systematically transforming a

context from a declarative sentence to a question. The introduction of transformers

revolutionized much NLG research including the field of question generation [31].
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Figure 2.4: PBE dataset sample

Because many more thorough explanations can be found online and in published

research, we will only briefly explain transformers at a high level here. As the title

of Vaswani et al.’s “Attention is All You Need” paper suggests, rather than using

long short-term memory (LSTM), transformers leverage attention mechanisms to

allow a model to selectively retain pieces of important information from past input

and output sequences. This provides the model with a selective but theoretically

infinite memory. Self-attention allows words near each other to adjust each other’s

meanings. Moreover, unlike Recurrent Neural Networks (RNNs) which generate

words in sequence by feeding output back into the model, transformers utilize

positional encoding, allowing for faster inference and training. This architecture

not only performs well in NLG tasks, but is also parallelizable, making transformer

training on vast datasets much easier.
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2.1.7 PEFT with LoRA

While transformers enable faster training on enormous datasets, base models have

recently grown so large that they require expensive computing resources and

weeks of training time. Generally, although fine-tuned models are versions of a

base model, they require repeated distribution of the entire model. This wastes a

lot of space.

Several solutions have been proposed to reduce the training costs and distri-

bution size of LLMs. Adapters are popular because they can greatly reduce the

amount of parameters that need training by introducing layers into the model that

are trained instead of the rest of the model. However, the additional layers also

slow down the model during inference.

Hu et al. [32] propose low-rank adaptation (LoRA), a type of parameter-efficient

fine-tuning (PEFT). LoRA’s implementation relies on the basic linear algebra shown

in Figure 2.5. X is an input matrix of size 1 × d and h is a the output of the same

order. Rather than training all the weights W that are in the base model’s weight

matrix of order d × d, LoRA trains matrices A and B of sizes d × r and r × d,

respectively, where r is referred to as the “rank” of the LoRA matrix. If r ≪ d,

LoRA can train much less weights than W while still producing a properly-sized

output of 1 × d because M1×d · Md×r · Mr×d = M1×d. B’s output matrix is then

summed with the base model’s during training to produce h.

Training layers separately and then combining them allows LoRA to store only

the difference in weights and indirectly focus on the most appropriate base weights

for the task domain. Using these mechanisms, LoRA can reduce the amount of

parameters that need fine-tuning by a factor of 10, 000. Furthermore, LoRA does

not incur a performance cost in the final model because the LoRA weights are
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Figure 2.5: Low-Rank Adaptation

combined with the base W for inference. Due to our hardware restrictions and

LoRA’s success in fine-tuning, we will use LoRA during fine-tuning.

2.1.8 Python and Libraries

Due to the various state-of-the-art algorithms and resources included in LLM

fine-tuning, research works commonly use Python for configuring their training

experiments [6, 5, 29, 23, 22, 24]. Python simplifies the implementation of these

algorithms and the access to these resources through its vast amount of useful

AI and data management libraries. For AI tasks, we plan to utilize a family of

libraries released by HuggingFace3 centered around the transformers library [33].

To clean and format data we will use the Python libraries pandas and numpy.
3https://huggingface.co/

https://huggingface.co/
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2.1.9 N-grams

In the field of natural language processing (NLP), many systems logically operate

with n-grams rather than words. The n in n-grams simply refers to the number of

consecutive grams a system pays attention to. A 1-gram is referred to as a unigram,

2-gram as a bigram, etc. A gram can be understood as a single unit of text, usually

a word, excluding punctuation and whitespace.4 For example, the sentence “I am

very tired.” can be split into four unigrams, [“I”, “am”, “very”, “tired.”], or into

three bigrams, [“I am”, “am very”, “very tired”]. These units of text are especially

useful when discussing evaluation methods of QG systems.

2.1.10 N-gram Precision and Recall

Precision and recall are two foundational metrics in machine translation (MT).

Evaluating NLG often consists of comparing the generated text to provided refer-

ences. N-gram precision is defined as the number of n-gram matches between the

generated (candidate) text and the reference (target) divided by the total n-grams

generated in the candidate.

p =
n−gram matches

n−grams in candidate
(2.1)

N-gram recall differs from precision simply by dividing the number of n-grams in

the reference.

r =
n−gram matches

n−grams in re f erence
(2.2)

4analyticsvidhya.com

analyticsvidhya.com
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These two metrics can be modified and combined to produce several NLG evalua-

tion methods.

2.1.11 Automatic MT Evaluation Metrics

While n-gram precision and recall report useful measures of how close a candidate

is to a reference, it remains unclear which metric to use for ranking models. Should

the metrics be combined? Is one metric more important than others? Is word

comparison sufficient for capturing proximity in meaning?

To solve these conundrums, several researchers in the early 2000s proposed

three increasingly sophisticated evaluation metrics. Papineni et al. [34] proposed

the Bilingual Evaluation Understudy (BLEU) metric which focused on precision

and comparing a candidate to several references. On the other hand, Lin’s Recall-

Oriented Understudy for Gisting Evaluation (ROUGE) gives much more weight

to recall than precision [35]. We use a version of this metric called ROUGE-L

which operates on the longest common subsequence (LCS). Finally, the Metric for

Evaluation of Translation with Explicit Ordering (METEOR) claims to improve

upon BLEU by combining precision and recall, further incentivizing correct word

order, and considering word stems and semantic roles.

2.1.12 QAG Generation Methods

There are two primary methods to produce a comprehensive set of questions and

answers for a given context [29]. The pipeline method comprises answer extraction

(AE) and question generation (QG). This method of QAG relies on the model

producing several potential answers which are then individually added to the

context and fed back into a QG model to produce a question for each answer (see
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the top of Figure 2.6). “End-to-end” QAG, on the other hand, requires the model

to produce many questions and answers simultaneously as shown in the bottom

of Figure 2.6.

Figure 2.6: Pipeline vs. end-to-end QAG

Much past research assumes answer-aware QG [6, 7, 2, 16, 8, 18], and several

complete QAG systems have been successful via AE and QG in recent research

[20, 23, 22]. Lopez et al. also report that generating only one question at a time

achieves slightly higher performance than generating several questions at once

[18]. Thus, we chose to approach QAG with the pipeline method as well so that

the model can focus on producing a single question at a time. For the rest of this

thesis, unless noted otherwise, understand that when discussing our QAG system

we are referring to an AE and QG system.
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2.2 State of the Art

Computer scientists have been attempting to automate question-asking for half

a century [36]. John H. Wolfe developed one of these early systems [9]. In 1976,

Wolfe published AUTOQUEST, an Eliza-like chatbot that leverages English syntax

to ask questions about paragraphs of text presented to the user. While this early

implementation of QG foreshadows some of the research conducted within the

past decade, modern computation and research have significantly advanced this

sub-field of NLG.

Notably, with the introduction of transformers in 2017 [31], NLP systems have

become more common and successful. Though much effort has been directed

towards creating knowledgeable, responsive, intriguing chatbots, transformers

already perform well in many NLG tasks and can be applied to the QG task [16].

In this section, we first consider similar research and then present some of

the currently available tools for question generation available online. During this

discussion, we point out the strengths and weaknesses of recent approaches and

how our proposed project differs from others in method and goal.

2.2.1 Published Research

Question generation has attracted significant research featuring diverse goals,

question types, and generation methods. Last and Danon [37] identify three

primary goals for automatic question generation (AQG): automatically generated

assessments, making students recall information as they learn, and generating

synthetic questions for training machine learning systems. The current body of

research accurately reflects this trichotomy as many papers claim educational

purposes as a primary application for their work [10, 11, 2, 3, 14, 19, 4, 5, 21, 23],
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while several others appeal to improving machine question asking and information

gathering capabilities [6, 7, 8, 38, 24].

Which question type is generated provides another distinguishing characteristic

to each research work. If two QG systems use similar methods but produce alto-

gether different types of questions, they are not interchangeable. Although Lehnert

[39] proposes dividing questions into twelve categories, Mulla and Gharpure [40]

instead propose a four-way categorization including factual questions, questions

covering multiple sentence, yes/no questions, and deep understanding questions.

Most papers we found recognized some form of these categories, specifically

distinguishing between factual questions and deep understanding questions using

various names such as one-hop vs. multi-hop [41], objective vs. subjective [23], or

factoid vs. high-level [37]. In this thesis, we ignore multiple-choice questions and

yes or no questions, choosing instead to focus on two broad categories, namely

extractive and deductive questions.

Extractive questions are factual, objective questions for which answers can

be extracted directly from the source text. The deductive category represents

high-level, multi-hop questions that may require the answerer to put together

information from various sources or deduce the correct answer through logical

reasoning. In other words, the answers to abstract questions cannot be directly

found in the source text. This thesis concerns itself with producing extractive

questions, not deductive questions.

The available body of QG research can be organized by the method used

to generate questions. All early, but even some recent, works rely on rule-based

approaches. These can be divided into syntax-based, template-based, and semantic-

based approaches [37]. Since 2017, several machine learning approaches for QG

have emerged and have also proven successful. Most of these novel approaches
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focus on neural question generation using recurrent neural networks (RNNs) and

long short-term memory (LSTM) networks or transformers[31]. We explain each

method using several examples below. Note that due to many methods lacking

common, or any, evaluation metrics, project evaluation is addressed in a separate

subsection.

Syntax-Based Methods

Although syntax-based methods can be traced back fifty years, there is no need

to cover their entire history. Michael Heilman’s 2011 dissertation on factual

question generation [11] provides an adequate first milestone as this QG system is

widely cited and used as a benchmark for QG system performance [14, 13, 3, 2, 8].

Heilman’s approach is an effective representative of syntax-based QG. His pipeline

can be summarized as follows. First, the author determines that he does not

need to generate questions from every sentence, just the key sentences. Thus, the

system selects certain sentences based on their position, length, entities, and other

features. The resulting set of sentences is processed into a simplified factual format

wherein pronouns are resolved, conjunctions and modifiers are organized, and

words are tagged with their appropriate part of speech. Second, these simplified

facts are transformed into questions using algorithmic rules such as inverting

the fact’s verbs and placing question words at the start of the sentence. Finally,

because questions are over-generated in the previous step, they are now ranked

by a regression model and only the best questions are retained, yielding a 52%

question acceptance rate.

This method of ”transforming” the source sentence into a question is so typical

of syntax/rule-based QG systems that it is often called a transformation system

[37]. Syntax-based systems are characterized by their use of sentence parsing, part
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of speech (POS) tagging, named entity recognition (NER), and word stemming to

simplify the problem before turning a fact into a question.

Pabitha et al. [12] approach the problem using common syntax-based tech-

niques such as NER, noun filtering, and stemming. However, they also enhance

their QG system by leveraging Naive Bayes to first determine an answer for which

a question may then be generated. Methods that perform some sort of AE have

the added benefit of providing not only questions but also the correct answers to

them. This is particularly important to projects that attempt to produce databases

of questions and answers [6], such as ours.

Khullar et al. [14] put a different spin on the typical syntax-based method by

extracting the question word (who, what, etc.) from the source text itself using

relative pronouns and adverbs. For instance, in the source sentence “Johan eats

soup which is dairy-free,” the word “which” is identified to produce the question

“Which soup does Johan eat?” This makes question-type misclassification virtually

impossible. Although this strategy outperforms Heilman’s in particular instances,

these types of questions are severely limiting, only accounting for 20% of the

sentences in Khullar et al.’s own example documents.

Syntax-based systems are not limited to older research. In 2021, Panchal et al.

[4] and Kumar et al. [5] both employed syntax-based systems. Like Heilman’s,

the studies begin by preprocessing the source text and ranking sentences. After

ranking sentences with NLTK’s TextRank, they use NER to find entities such as

people to replace with question words such as ”who.” Panchal et al. also categorize

some sentences to be processed with discourse algorithms which mainly perform

transformation, yielding a 49% question acceptance rate overall. Kumar et al.,

on the other hand, focus on producing multiple choice questions (MCQs) using

POS tagging and a custom-trained named entity recognizer. Unfortunately, this
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question and answer generation (QAG) system produces unnecessarily lengthy

answers (according to examples) and struggles to handle sentences containing

multiple verbs.

Despite their partial success, the primary shortcoming of syntax-based ap-

proaches is easy to identify. Considering the source text syntax but not its meaning

forsakes the primary purpose of language. These systems cannot produce all types

of meaningful questions by considering rigid sentence structures.

Template and Semantic-Based Methods

Template-based QG methods differ from syntax-based systems by explicitly outlin-

ing common sentence structures and question types that can be based on those

structures. These methods also often employ semantic role labeling to include the

text’s general meaning in the decision-making process. Wolfe’s AUTOQUEST [9]

provides a good example of pattern-matching strategies for asking questions. For

example, AUTOQUEST identifies sentence patterns such as “S1 so that S2” and

then constructs a question like “Why S1?” with the expected answer then being S2.

Of course, modern template-based methods are much more advanced than

the syntactic pattern-matching available in 1976. Like Heilman [11], Liu et al.

[10], first employ several syntactical and preprocessing tools such as NER and

sentence parsing with Tregex and the Stanford Parser to produce questions from a

scientific article. However, this project further employs a semantic word network

named SentiWordNet [42] to detect opinions based on verbs. If the syntactic

and semantic information for a sentence matches predefined templates within a

template database, the corresponding questions are generated by using parts of

the source sentence.

Mazidi and Tarau [13] take the pattern-matching and semantic labeling method
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even further. By leveraging natural language understanding (NLU), their system

first seeks to understand what the source text communicates. That understanding

enables the categorization of the sentence. Surprisingly, only eight main sentence

types are found to account for 96% of the sentences in their test sets. The system

creates sentence objects based on the information gathered so far and then matches

these objects against tens of templates to determine which questions should be

asked. Using Amazon Mechanical Turk5 for human evaluation, Mazidi and Tarau

achieve a 55% question acceptability rate, slightly better than Heilman’s [11].

While a more recent study by Keklik et al. [15] successfully uses NER, SRL, and

templates to generate questions comparable to some model-based approaches [3],

labeling words with roles is insufficient. Language is meant to be understood cohe-

sively. Rule-based methods only roughly approximate the human question-asking

process. The following subsection presents methods that leverage increasingly

sophisticated models of language to generate questions.

Question Generation with Models

While neural networks had been employed in question answering prior to this [43],

the first example we found of neural question generation (NQG) was published in

2016. In their research, Serban et al. [6] attempt to generate a database of questions

for machine learning. They use a knowledge base (KB) named Freebase to extract

facts - triplets containing a subject, relationship, and the related object - which are

then used for QG. These facts are embedded in a 200-dimensional space configured

for learning new entities and relationships. Using the SimpleQuestions dataset,

embeddings are trained and then decoded using an RNN.

Although this system is used to generate thirty million questions and answers,
5https://www.mturk.com/

https://www.mturk.com/
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this vast database is not used nearly as often as the handwritten Stanford Question

Answering Dataset (SQuAD) [30]. Published only two months earlier, SQuAD

contains 300 times less questions and answers but has quickly become a standard in

the field. This contrasts the question quality between the datasets and encourages

this thesis to utilize SQuAD.

Du, Shao, and Cardie [3], who put SQuAD to good use, are often cited as

pioneers in NQG. Because SQuAD is a question answering (QA) dataset, Du et

al. invert the dataset by locating the question context using the provided answer

locations. This flexibility makes SQuAD very popular in QAG projects. Like Serban

et al. [6], Du et al. use a decoder to generate questions. However, they also use an

encoder to process the source text. This encoder-decoder architecture practically

functions by summarizing an input sequence into a hidden representation that

is then translated back into a text sequence by the decoder. Though this project

also uses attention mechanisms like the ones popularized by Vaswani et al. [31],

its neural networks are still based on RNNs and LSTMs. After training against

SQuAD, this model understandably outperforms Heilman in a SQuAD-based

evaluation metric and achieves state of the art performance according to automated

metrics (discussed later).

Less than a year later, the introduction of transformers revolutionized much

NLG research including the field of question generation [31]. Explained in the

theoretical framework (Section 2.1) above, transformers consider both individual

word meanings and sequence meanings in inference. Due to the parallel computing

methods, training transformers is also much easier than comparable RNNs. Due to

these advantages, most approaches for QG after this publication use transformers.

Zhou et al. [2] published “Neural question generation from text: A preliminary

study” one month later. Zhou et al. use an attention-based decoder for answer-
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aware QG. Answer-aware question generation describes a model that uses answers

marked within their context sentence or paragraph to generate corresponding

questions. Like Du et al. [3], this study inverted SQuAD. Zhou et al. marked the

desired answers using the BIO scheme where “B” denotes the beginning of an

answer, “I” a continuation, and “O” the end. This method was also joined with

other features, such as a copy-mechanism to help the model handle rare words.

The resulting model produced more relevant questions than Heilman’s [11].

Kriangchaivech and Wangperawong [16] soon combined the power of transform-

ers with old mechanisms such as POS tagging and NER to help their Bidirectional

Encoder Representations from Transformers (BERT) model learn more effectively.

Intriguingly, they introduced additional context to their model, providing their

model with the sentences surrounding SQuAD’s designated answer sentence.

Though this system generated questions with a word error rate (WER) of 9.66 on

average, even questions that were significantly different form the target were fluent

and relevant.

The following year, Liu et al. [8] combined transformers with an approach

resembling Serban et al.’s [6] fact-guided knowledge base. Their system uses

an algorithm called the “information extractor” to gather answers, choose clues

(context information), and determine question style (ACS). This is then fed into

a fine-tuned generative pretrained transformer model (GPT-2 small) for question

generation. This AE and QG system aims to convert a one-to-many problem of

generating multiple questions from a single context into a one-to-one problem

where each generation produces a different question based on the ACS information

provided. Not only does this approach solve the common issue that models do not

generate enough questions, but it also avoids the issue where automated metrics

penalize model outputs for putting questions in the “wrong” order [22].
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The introduction of the Text-to-Text Transfer Transformer (T5) [44] in 2020

transformed the NLG playing field again. A year later Grover et al. [19] trained

T5 small on SQuAD to produce answer-agnostic questions using nothing but the

model. Nguyen et al. [21] soon showed that T5 could be fine-tuned for topical QG

rather than extractive or even deductive QG.

Zhang et al. [20] use similar fine-tuning methods to Nguyen et al., but they

also present a more thorough QG system called Transformer with Preprocessing

and Postprocessing Pipelines (TP3). During preprocessing, their system performs

AE using NLP tools including SRL and POS analysis and filters out unsuitable

sentences and answers. The context sentences and answers are then fed to a T5

model fine-tuned on SQuAD and similar datasets. After filtering questions in the

postprocessing step, 92% of questions are accepted.

While AE using NLP tools worked in the TP3 method, Goyal et al. [23] instead

uses the multi-tasking capabilities of T5 to perform AE and QG with the same

fine-tuned model. Using HuggingFace’s Transformers library [33], this project

fine-tunes T5 by prepending contexts with “extract answers” and highlighting

the sentences to produce answers from. Likewise, the model is then trained with

the command “generate questions” and shown answer-aware context sentences.

The model is then used to extract answers and generate relatively high quality

questions.

Ushio et al. [29] contribute perhaps the best-explained example of QAG

with transformers. Their research compares the performances of various BART

(another pretrained model) and T5 model versions. They use the HuggingFace

Transformers library [33] to fine-tune these models. First they test several ranges

of hyperparameters comprising learning rate, label smoothing, and batch size.

After identifying the best configuration, the models are trained and tested with
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automatic metrics. T5 large performs the best with its small version close behind.

Intriguingly, Ushio et al. also test training answer-agnostic models. This variation

of T5 large actually performs worse than the answer-aware T5 small model, lending

more credibility to answer-aware QG. Paragraph-level generation models also

outperform those that only operate with a single sentence.

In a subsequent paper [22] the same authors publish a Python library aiming

to simplify the unnecessary complexity of most QG pipelines. They are not the

first to raise this concern [18]. Unless packaged and made publicly available, most

rule-based methods possess too many moving parts - preprocessing, ranking, NER,

POS tagging, parsing, SRL, template matching, postprocessing - for non-experts

to use. Even many model-based methodologies are very complex [6, 8, 24]. lmqg,

language model question generation, enables inference in one line of code, provides

a framework for training custom models, tests models against combined popular

metrics, and integrates with the open-source HuggingFace platform. Furthermore,

to improve on a system like Goyal et al.’s [23], lmqg allows for the training of

separate AE and QG models. All the models are available on HuggingFace and

model inference can be tested at https://autoqg.net/. Unfortunately, because

lmqg only supports models such as T5, we cannot use the library in this thesis to

simplify our pipeline.

Evaluation Methods

Evaluating QG systems is notoriously difficult and imperfect. For example, during

their evaluation, Kriangchaivech and Wangperawong [16] found that the questions

that were ranked the farthest away from their target outputs were still valid, gram-

matical, and relevant. This is common and expected in the QG field. Because the

target output can be expressed in many different ways through natural language,

https://autoqg.net/
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it is difficult to automatically determine the model’s level of success.

Due to the flexibility of QG solutions and the nature of this NLG problem,

comparing systems is difficult as there are no universal metrics. Various auto-

matic metrics are used across the literature including word error rate (WER) [16],

compression/omission ratios [12], and F1 score [5]. These automated metrics for

machine translation (MT) are often closely related to or based on precision and

recall. Fortunately, the metrics presented in the Theoretical Framework (Section

2.1), BLEU, ROUGE-L, and METEOR, can be found for approximately half of the

studies presented.

Papineni et al. [34] first proposed BLEU for quick evaluation of machine

translation between human languages. Modeled after WER, BLEU is a precision-

based metric that compares a model’s output, the candidate translation, to one or

many reference translations by matching up groups of words called n-grams. For

example, unigram matching (BLEU-1) counts the number of words in the candidate

that also appear in the reference and divides by the total number of words in the

candidate. This allows BLEU to not only measure how close the machine’s output

is to the target sequence, but also allows for the output to deviate from the exact

target. This is important as the model trains and incrementally achieves higher

scores as well as in the case when the model produces a different but equally valid

translation from the reference. - Besides testing for basic precision, BLEU limits

the matches in the candidate to the word occurrences in the reference and includes

a decaying exponential brevity penalty that penalizes the model for producing

translations much shorter than the reference. At the unigram level however, the

metric could return a perfect score for a translation that has all the right words

in a nonsensical order. This is why many researchers choose to compare longer

strings of words such as two (bigrams) or four. The most common metric in QG
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recently has been BLEU-4 [15, 3, 27, 17, 8, 18, 29, 23].

Recall-Oriented Understudy for Gisting Evaluation (ROUGE), as its name sug-

gests, gives much more weight to recall than precision [35]. Originally developed

for automated evaluation of summaries, ROUGE sums matching n-grams, over

multiple references if available, and then divides by the average reference length.

In this way rather than assessing whether all of the candidate is similar to some

reference, ROUGE gives a score focused on how much of the reference is contained

in the candidate. In the QG field, a variant of ROUGE called ROUGE-L is used

which is not based on matching a predefined n-gram length, but rather on finding

the longest common subsequence (LCS) between the candidate and reference.

In 2005, Banerjee et al. [45] proposed a third automated metric, METEOR, to

improve Papineni’s popular BLEU. Rather than matching all n-grams at once based

on the exact words, METEOR matches in several stages with varying modules

such as a stemmer and word synonym module. Thus, words with the same

meanings or semantic role can be matched and included in grams. Multiple

matches across modules are prioritized based on a formula that incentives correct

semantic order. Like ROUGE, METEOR focuses on recall when calculating the

final score. METEOR also includes a chunk penalty which minimizes the number

of n-grams the candidate must be split into for matching between candidate and

reference.

While each new metric claims to outperform its predecessors, the researcher

must choose between the metric’s accuracy and the added computational com-

plexity required to compute it. Zhang et al. [46] proposed a metric based on an

encoder model called BERT, Bidirectional Encoder Representations from Trans-

formers, for NLG tasks that require the extra complexity. BERTScore takes word

meaning into account when matching a candidate to a reference by generating
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context-dependent embedding representations of each gram. Then the matching is

performed on the embedding space using cosine similarity.

Ji et al. [47] propose a different approach entirely. Due to the one-to-many

nature of the QG problem [22], even human-written questions may not match the

target reference. Rather than penalizing the mismatch like BLEU, ROUGE, and

METEOR would, QAScore disregards any output references and instead focuses

on the answerability of the question. QAScore is based solely on a QA model’s

ability to produce the proper answer given the generated question and context.

While these more complex metrics show promise, BLEU-4, ROUGE-L, and

METEOR are by far the most commonly reported metrics in the QG field. Thus,

Table 2.1 only reports these metrics. Note, however, that it is difficult to objectively

determine which model is “best” as these metrics fundamentally depend on what

references the QG system is compared to. The aforementioned training dataset

SQuAD is also commonly utilized as a benchmark for these metrics. However, not

all papers report these details.

2.2.2 Existing Tools

Although question generators have yet to be perfected in academic research,

various online tools and businesses already claim to offer question generation

services. Popular transformer-based chatbots are also capable of many NLP

tasks [16], and must be considered as potential solutions to reach our objective:
6Empty cells signify that we were unable to find a particular evaluation metric for that system.
7If a system displays two citations, the first specifies the original publication and the second

the source of the system’s evaluation metrics.
8Input-Output Type: QG means only questions were generated (or that answers were not

directly made available). AAQG stands for Answer-Aware Question Generation where answers
have to be provided to the system before generating questions. QAG means both questions and
answers were generated by the system. AE QG means that the system extracted answers, then
generated questions, and made both available.
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System Evaluation 6

Method Author7 I/O8 B4 R-L MTR

Syntax

Heilman et al. [11, 15] QG 11.18 30.98 15.95

Pabitha et al. [12] AAQG — — —
Khullar et al. [14] QG — — —
Panchal et al. [4] QG — — —
Kumar et al. [5] QAG? — — —

Template

Wolfe et al. [9] QG — — —
Liu et al. [10] QG — — —
Mazidi et al. [13] QG — — —
Keklik et al. [15] QG 10.61 40.38 25.01

RNN Serban et al. [6] AAQG — — 35.38

Seq2Seq
Du et al. [3] QG 12.28 39.75 16.62

Zhou et al. [2, 8] AAQG 13.51 41.60 18.18

Kim et al. [17] QAG? 16.20 43.96 19.92

Transformer

Kriangchaivechet al. [16] AAQG — — —
Liu et al. [8] AAQG 22.05 53.25 25.11

Lopez et al. [18] QG 8.27 44.38 21.20

Grover et al. [19] QG — — —
Zhang et al. [20] AE QG — 50.99 48.98

Nguyen et al. [21] QG — — —
Ushio et al. [29] AAQG 27.21 54.13 27.70

Goyal et al. [23] AE QG 18.87 40.64 25.24

Hwang et al. [24] QG — — —

Table 2.1: System Category and Evaluation: Unless otherwise noted, evaluations
are self-reported. Only the best system’s performance from each publication is
shown. The best system is defined as the proposed system with the largest number
of highest automatic evaluation scores. Note that only the three common scores,
BLEU-4 (B4), ROUGE-L (R-L), and METEOR (MTR), are shown here.

automatic, comprehensive, extractive QAG. Thus, the below sections summarize

QAG tests performed with some popular LLM chatbots and the best tools for QG

available online.

LLM Chatbots

We focus our attention on four popular free chatbots representing distinct model

families and parent organizations: Bard by Google, HuggingChat by HuggingFace,

https://bard.google.com/
https://huggingface.co/chat/
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ChatGPT by OpenAI, and Claude by Anthropic. We provided a standardized

prompt (see A.1 in the appendix) to each model which requested the model to

generate seven extractive questions and answers based on a short context. To

test the models with the material used in our proposed case study, we provided

the verses from the New King James version of the Bible as contexts (shown in

Text A.2). The prompt was engineered to maximize the quality of the questions

generated. Each model was tested in multiple conversations.

Bard produced less than desirable outcomes (see Text 2.1). It struggled to

generate relevant extractive questions based on the actual contexts provided.

Trained to incorporate broader knowledge into its responses, Bard referenced other

verses with answers outside the provided context. Bard also asked subjective

questions without clear answers. The questions that were generated were also

formatted inconsistently and surrounded by the chatbot’s commentary.

Sure, here are 7 questions and answers based on the source text you gave me:
What happened in the days when the judges ruled?
A famine came to pass in the land. (verse 1)
. . .
What was the man’s name?
Elimelech. (Not explicitly stated in the text, but this is the name given to the man
in later verses.) . . .
Here are some additional questions that you could ask:
. . .
How did Naomi end up returning to Bethlehem?

Text 2.1: Examples of Bard’s responses ordered from best to worst

HuggingChat fared slightly better than Bard. Text 2.2 shows how the LLaMA

2-based model successfully focused on the provided context and generated less

boilerplate text. However, sometimes the provided answers were incorrect or too

long.

ChatGPT also struggled with answer length and uniquely sometimes generated

https://chat.openai.com/
https://claude.ai/chats
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Q: Which city did they travel to?
A: He dwelt in the country of Moab.
...
Q: According to John 1:1 who or what was in the beginning?
A: The Word

Text 2.2: Examples of HuggingChat’s responses

questions that it could not find the answers to, replying instead with “Answer not

found in source text.” ChatGPT also struggled to author only extractive questions,

favoring more abstract, subjective questions.

Claude performed the best among the public LLM chatbots. This system

generated consistently formatted questions that even included the desired multi-

point numbering which no other model produced. However, some of Claude’s

questions were still deductive or subjective rather than extractive.

Also, during our last systematized experiment, Claude stopped the test short

as shown in Figure 2.7 due to its rate limit of fifty messages per three hours [48].

Most public models place limits on users to protect their systems from abuse.

Unfortunately, this too makes bulk QG difficult for public chatbots.

Figure 2.7: Claude’s rate-limiting message

These experiments suggest that some of these chatbots’ capabilities hinder

their effectiveness in asking the particular types of questions needed. This is

to be expected as the primary purpose of chatbots is to converse with humans

and provide conversational feedback. In a way, they are a vastly more advanced

version of Wolfe’s conversational question generation chatbot [9]. The background

knowledge and reasoning capabilities they possess are excellent tools for many
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NLG tasks, including conversational abstract question generation, but they cannot

be used effectively to generate a database of extractive questions.

Question Generation Websites

We also tested many online tools for question generation. While websites like

Hyperwrite9, Quizbot10, Scalenut11, QueTab12, and ToolsDay13 may adequately

serve certain purposes, they do not produce the output required for this project.

Hyperwrite, Quizbot, and Scalenut for example, do not generate extractive ques-

tions, but rather focus on topical or deductive questions. Other tools such as

QueTab and ToolsDay generate the right types of questions but do not generate

any answers for them.

On the other hand, even more relevant tools such as OpExams14, LogicBalls15

and QuizGecko16 suffered from long answers. When presented with the first nine

verses from the book of Joshua, the OpExams system generated several valid and

relevant questions (see Text 2.3). However, most of the questions were too general,

requiring longer explanations based on the text rather than short excerpts from

it. QuestGen17 generated much better extractive answers. However, this system

requires a subscription to use and still gets some answers wrong.

AutoQG18 is another promising tool created by Ushio et al. [22]. AutoQG

provides several models and QAG architectures. Although the small T5 model
9https://www.hyperwriteai.com/aitools/question-generator

10https://quizbot.ai/ai-templates
11https://www.scalenut.com/tools/engaging-questions
12https://www.quetab.com/ai/question/generator
13https://toolsaday.com/writing/questions-generator
14https://opexams.com/free-questions-generator/
15https://logicballs.com/tools/question-and-answer-generator
16https://quizgecko.com/create
17https://dashboard.questgen.ai/
18https://www.autoqg.net/

https://www.hyperwriteai.com/aitools/question-generator
https://quizbot.ai/ai-templates
https://www.scalenut.com/tools/engaging-questions
https://www.quetab.com/ai/question/generator
https://toolsaday.com/writing/questions-generator
https://opexams.com/free-questions-generator/
https://logicballs.com/tools/question-and-answer-generator
https://quizgecko.com/create
https://dashboard.questgen.ai/
https://www.autoqg.net/
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What did the LORD say about the observance of the law in verse 7?
The LORD commanded Joshua to observe and do according to all the law which
Moses commanded him, not turning from it to the right or to the left, so that he
may prosper wherever he goes.

Text 2.3: OpExams generated relevant questions with long, non-extractive answers

generates inadequate and incoherent questions, its large counterpart fared much

better, suggesting that model size can be important for ensuring quality. Tests with

T5 small also indicated that the AutoQG models were not as accustomed to the

type of context we provided it, old English. For example, given the first verse of

Joshua, T5 small misinterpreted “Judah” as the name of an individual rather than

the location of an Israelite tribe (see Text 2.4). This further supports a project using

custom data to train a QAG model for generating our database.

question: Who went to dwell in the country of Moab?, answer: Judah

Text 2.4: Sample AutoQG output

While existing online QG tools have varying capabilities, none fully meet

the needs of this project. This supports developing a custom model trained on

domain-specific data to produce high-quality, extractive questions and answers.

2.3 Discussion

Although the State of the Art (Section 2.2) includes many methods for QG, none

sufficed for the goals listed in Chapter 1. For example, we desired to generate both

questions and answers from study materials. Among the model-based studies we

found and presented, only three [8, 20, 23] generated answers along with questions.

While other studies for answer-aware QG may have advanced the state of the art

by generating deeper or greater quantities of questions, there are fewer practical

uses for question generators that necessitate answers to be pre-selected by hand.
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Rather than creating a few representative questions to test whether a student has

read their study materials or not, we aimed to be able to generate a comprehensive

database of specific questions to assess source text memorization and subsequent

recall. The closest project to this we found was Serban et al.’s [6] generation of

a vast question and answer dataset. However, the goal of this generation was to

train machines whereas our goal was for human use.

Many studies also only produced more deductive than extractive questions

[10, 15, 21]. Public chatbots also struggled to generate the requested question type,

and they struggled to exclusively use information in the provided source text.

Because all of the available QG systems fell short of a comprehensive, extractive

question and answer generator, we continued to develop our own system.
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Chapter 3

Methodology

Because no former research or current tools met our requirements, we undertook

the process of fine-tuning a large language model to cater specifically to QAG in

our domain.

Due to their recent success, we chose to leverage transformer-based language

models to produce a system for comprehensive, extractive QAG. All the Python

scripts associated with this project can be found on the qag GitHub repository.

The development of this repository and the overall project unfolded through these

steps:

1. Selecting a base Language Model (LM)

2. Aggregating various data sources

3. Processing data for fine-tuning

4. Programming the fine-tuning scripts

5. Experimentally choosing the ideal training configuration

6. Identifying optimal hyperparameters

https://github.com/MatousAc/qag
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In the pursuit of each of these steps, we drew insights from the examples

provided by past QAG systems and other relevant research. Our approach in each

step is expanded in the following sections.

3.1 Selection of a base LM

We utilized LLaMA 2 [49] as our base model due to its accessibility and capabilities.

Although an increasing number of corporations have been investing in LLM

research (IBM Watsonx, Microsoft Copilot, Snapchat’s My AI, Poe AI), many

organizations safeguard their models due to their commercial value. This leaves

only a handful of options for open-source base model families. Of these, three

LLM families stand out: old “GPT” models such as the GPT-NeoX [50], Google’s

T5 [44], and Meta’s models such as LLaMA 2 [49]. According to Touvron et al., the

LLaMA 2 model family outperforms other associated open-source models (such as

MPT, Falcon, and Vicuna) in both pure text-completion and conversational output.

Furthermore, LLaMA 2 is comparable or better than closed-source models such as

GPT 3.5 and PaLM.

Although base model capability is imperative, none of this capability matters if

the model’s infrastructure is too complex to set up and train. Due to LLaMA 2’s

connection to Meta, we expected it to provide better platform integration options

and documentation than most other open-source LLMs. This support is critical

when fine-tuning a model for novel tasks.

LLaMA 2 provides a family of base models consisting of text-completion models

at different sizes - 7, 13, 34, and 70 billion parameters - and fine-tuned chat models

for each size. For simplicity, henceforth we will refer to the text-completion models

as just “text” models. Due to hardware limitations, only the 7b and 13b text and
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chat base models were tested on answer extraction prior to training (five or more

trials). As shown in Table 3.1, there was little difference in execution time for the

two sizes, especially for the faster chat models.

7b 13b
text 3.92 4.93

chat 1.80 2.12

Table 3.1: Average base model execution times in seconds

Although larger, the 13b models did not provide improved model output. If

we intended to retrain all the weights during fine-tuning as is done to produce

the LLaMA-2-Chat models, then perhaps training more parameters could have

improved model performance. However, because we actually aimed to train a

LoRA layer that would be magnitudes smaller than the base model, we proceeded

with the 7b models. If the need arose for more fine-grained tuning of more weights,

the LoRA rank could be increased instead of the base model size.

Both text-completion models struggled to coherently continue the prompt as

desired. For example, when presented with the prompt in Text 3.1, the 7b-text

model would produce some phrases from the context, some random phrases,

guesses at the verse reference, and many incoherent unicode characters. The

13b-text model performed similarly. Sometimes, rather than continuing a natural

output, the 13b-text model would ignore the prior text and begin a German lesson

about the pronunciation of the letter “ä”. Furthermore, both text models were

incapable of stopping their output naturally. The output was often truncated

mid-word.

The LLaMA chat models, however, followed instructions much more accurately

and naturally completed their output. Intriguingly, this positive behavior only

occurred while not formatting the chat model input as in the prompt in Text 3.2,
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<s> ### Here is a context verse. ### Verse: <context> ### Here are seven nouns
and noun phrases in a comma-separated list that appear in this Bible verse:

Text 3.1: The most successful prompt for text-completion models. “<context> ” is
replaced by actual contexts at runtime.

as the meta-llama repository recommends. If the prompt was formatted in that

instructional manner, the model would try to discuss the context and questions

rather than continually generate many of them.

<s> [INST] <<SYS>>\n{Extract any entities, actions, key phrases, or lists
that appear in the following prompt. Separate each unit by a hashtag (#).
Only return words, phrases, and lists that are in the prompt provided.}\n
<</SYS>>\n\n{<context>} [/INST]

Text 3.2: One of the prompts tested that followed chat-specific formatting. The
system prompt belongs in the first set of curly braces and the first user input, in
this case a context, in the second set.

After considering all of the above preliminary results, we chose to primarily

fine-tune the 7b-chat model and to ignore the chat-specific formatting. Unless

stated otherwise, henceforth any base model referred to is the LLaMA-2-7b-Chat

model.

3.2 Data aggregation

Due to SQuAD’s prevalence in QG [2, 3, 16, 17, 18, 19, 20, 21, 29, 23], we first

attempted to use this dataset for fine-tuning our model. We used Ushio et al.’s [22]

inverted SQuAD dataset.1, whose format is shown in Figure 3.1 The eight columns

include smaller and larger contexts, questions, and answers. <hl> tokens are used

to indicate the portion of context the model should focus on.
1https://huggingface.co/datasets/lmqg/qg_squad

https://github.com/meta-llama/llama/issues/481
https://huggingface.co/datasets/lmqg/qg_squad
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Figure 3.1: Ushio et al.’s inverted SQuAD

Surprisingly, fine-tuning on this dataset did not improve the model’s perfor-

mance for AE. The most probable reason for this was that the SQuAD was not

sufficient for AE specifically. A basic QAG training dataset consists of three

columns: context, question, and answer. These columns are prepared for training

a model for QG, but more processing is required to train for AE. To present the

model with proper examples of extracting relevant phrases and words from a

context, a QAG dataset must be grouped by contexts, and the answers must be

aggregated into a single string. This makes possible training examples where

the model is shown the context and then is trained to extract several potential

answers. Unfortunately, very few of the context paragraphs in the SQuAD dataset

can be effectively aggregated in this way. The resulting dataset contains one or two

extracted answers per training example. For Ushio’s specific dataset, there were

only 1.16 answers per context. Effectively, the model trained to produce only one

potential answer in its output. Because SQuAD’s answers are all contained in the

context, the model learned to simply repeat the context in order to minimize loss.

After encountering this obstacle, we studied Touvron et al.’s data collection

process for fine-tuning the LLaMA 2 family of models for conversation [49].
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Touvron et al. fine-tune their base models using a method called supervised

fine-tuning (SFT). The ”supervised” in SFT simply refers to training a model on

”labeled” examples - examples where both the input and the desired model output

are written by humans. Touvron et al.’s description of SFT emphasizes obtaining

higher quality data rather than a greater quantity of data. For example, rather than

utilizing significant amounts of third-party SFT data, Touvron et al. collected their

own, high-quality training examples.

Following this guidance, we chose to discard the SQuAD dataset and instead

focus on collecting high-quality data specific to our domain. Toward this end,

we leveraged personal connections from past PBE tournaments to gather a hand-

written question and answer PBE dataset. By sourcing data directly from tourna-

ment participants, we ensure high-quality, authentic examples for fine-tuning. We

received the data in various formats. 75% of our examples were gathered from

various Microsoft Excel spreadsheets and personal PBE Quizlet sets. A single

semicolon-separated database dump accounted for 18.5% of the data, and about

6% was provided in comma-separated values (CSV) format. The remaining half

percent came from OCR applied to images within PDFs provided by the North

American Division (NAD) PBE administrators. All together, Lisa Myaing, Michael

Babienco, Beth deFluiter, Sharon Crews, and Ki Song provided 60,609 unique

examples for training. Although these examples came from many different sources,

due to their strict adherence to PBE tournament standards, they each provide

questions, answers, and references to contexts that can be used for training.

Adhering to the same format does not, however, imply that all data sources

provided examples of the same quality. Some question authors might labor for

weeks coming up with the best questions possible, while others may prioritize

quickly writing questions over question relevance and logical sense. We even found
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that some data sources were poisoned with absurd data. For example, we had to

manually scour the semicolon-separated database dump to remove questions and

answers such as the ones shown in Text 3.3.

“Question”;“Answer”
“Papa is now a...”;“Donut”
“Who am i”;“Ur mom lol”
“Chimmy-chungas”;“Yeeeeee”

Text 3.3: A few of the poisoned rows that had to be manually removed

Due to this disparity between data sources, a quality score was assigned to each

source so that questions can be filtered by this column as necessary to optimize

model output during training. 20 contexts were chosen at random from each data

source and manually assessed with regard to the following criteria:

1. Question and answer count per context: Higher counts are critical for AE

training.

2. Question and answer formatting: Do examples include unicode or non-

English characters?

3. Answer grouping quality: Are lists presented as multi-point examples?

Are there multiple concepts needlessly grouped together into multi-point

questions?

4. Context for end-users: Do questions include enough of their source context

to help the user recall the correct passage?

Based on these criteria, Lisa Myaing’s and Sharon Crews’s examples received

the highest quality ratings of 9
10 . Surprisingly, some of the official NAD examples

received the lowest rating of 3
10 because they had very few questions per context
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and were littered with random unicode characters due to the OCR that had to be

performed on the provided PDFs.

Before all the datasets were aggregated, however, each needed to contain the

same columns. Babienco’s database dump used four columns to specify where

in the Bible to find the question’s context: book, chapter, verse, and endVerse.

This database also contained a column that specified the number of points each

question was worth: points. All other sources included this information in the

question column as shown in Text 3.4. This column not only included the question,

but also a reference for the context and the point value. Thus, we wrote a Python

cleaning script, pbeClean.py, to extract this information into separate columns to

match Babienco’s dataset.

According to 1 Peter 1:23, how have you been born? 3 points

Text 3.4: Important information is included as semi-structured plain text.

The script, shown in Listing 3.1, primarily utilizes regular expressions and built-

in string manipulation functions in Python. First the two datasets, both named

after their primary data sources, are loaded. lsb (Lisa, Sharon, Beth) contains

the columns refQuestion, answer, categories, source, and quality. The bab

(Babienco) dataset, on the other hand, contains question, answer, points, book,

chapter, verse, endVerse, and source. For brevity, we use the Dataframe named

“df” to represent operations performed on both datasets, and we condense some

expressions or lists into descriptors surrounded by angle brackets (< and >). The

script performs these basic data cleaning steps before aggregation:

1. Trimming whitespace and removing consecutive spaces (line 8).

2. Basic question and answer deduplication (line 10).

https://github.com/MatousAc/qag/blob/main/scripts/pbeClean.py
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1 import pandas as pd , numpy as np , re , csv
2 # load data and f i l l in Babienco ' s source and q u a l i t y columns
3 l s b = pd . r e a d e x c e l ( '<excelDataSource> ' )
4 babMain = pd . read csv ( '<databaseDumpDataSource> ' , sep= ' ; ' )
5 babCSV = pd . read csv ( '<csvFi leSource> ' )
6 bab = pd . concat ( [ babMain , babCSV ] )
7 bab [ ' source ' ] = ' Babienco ' ; bab [ ' q u a l i t y ' ] = 8 ;
8

9 # 1 . tr im whitespace , rm consecut ive spaces
10 df = df . r e p l a c e ( r ' ˆ + | +$ ' , r ' ' , regex=True ) . r e p l a c e ( r ' \s+ ' , ' ' , regex=True )
11 # 2 . b a s i c dedupl icate on re ference , question , and answer
12 df = df . drop dupl ica tes ( subset =[ '<question> ' , '<answer> ' , '<refCols> ' ] )
13 # 3 . f i l t e r to remove FITB && T/F
14 f i t b T F = r ' | f i t b | f i l l in the blanks | t\/ f | t rue or f a l s e '
15 df = df [ df [ '<question> ' ] . s t r . conta ins ( f i tbTF , regex=True , f l a g s =re . I ) == Fa l se ]
16 df = df [ df [ '<answer> ' ] . s t r . conta ins ( r ' ˆ ( t rue | f a l s e ) ' , regex=True , f l a g s =re . I ) == Fa l se ]
17 # 4 . drop rows with missing r e f e r e n c es , quest ions , or answers
18 df = df . dropna ( subset =[ '<question> ' , '<answer> ' , '<refCols> ' ] )
19 # 5 . e x t r a c t point values ”2 points ” , ”2− pts . ” e t c .
20 ptsRe = r ' \s * \ ( ? ( ? P<points>\d+)\s * − ? ( ? : point | pt | pt ) s ?\ . ?\ ) ?\ s * '
21 l s b [ ' re fQuest ionCategor ies ' ] = l s b [ ' re fQuest ion ' ] + l s b [ ' c a t e g o r i e s ' ] . astype ( s t r )
22 l s b [ ' po ints ' ] = l s b [ ' re fQuest ionCategor ies ' ] . s t r . e x t r a c t ( ptsRe , f l a g s =re . I )
23 l s b [ ' po ints ' ] = l s b [ ' po ints ' ] . r e p l a c e ( np . nan , 1 ) . astype ( np . i n t 6 4 )
24 l s b [ ' re fQuest ion ' ] = l s b [ ' re fQuest ion ' ] . s t r . r e p l a c e ( ptsRe , ' ' , f l a g s =re . I , regex=True )
25 l s b [ ' c a t e g o r i e s ' ] = l s b [ ' c a t e g o r i e s ' ] . s t r . r e p l a c e ( ptsRe , ' ' , f l a g s =re . I , regex=True )
26 # 6 . pu l l c a t e g o r i e s out i n t o t h e i r own columns
27 c a t s = [ ' 2To3 ' , ' b igPoints ' , ' people ' , ' p laces ' , ' names ' , ' numbers ' ]
28 f o r c a t in c a t s : df [ c a t ] = df [ ' c a t e g o r i e s ' ] . s t r . conta ins ( c a t . lower ( ) ) == True
29 # 7 . e x t r a c t r e f e r e n c e ” according to . . . ”
30 refRe = r ' \s * According to ( ? P<book> (? :\d\s ) ? [ a−zA−Z] + ) \s ( ? P<chapter>\d+) : ( ? P<verse>\d+)

( ? : [ − , ] ? [ ] ? ( ? P<endVerse>\d+) ) ? , ?\ s * '
31 newCols = l s b [ ' re fQuest ion ' ] . s t r . e x t r a c t ( refRe , f l a g s =re . I )
32 l s b [ ' quest ion ' ] = l s b [ ' re fQuest ion ' ] . s t r . r e p l a c e ( refRe , ' ' , f l a g s =re . I , regex=True )
33 l s b = pd . concat ( [ lsb , newCols ] , a x i s =1)
34 # 8 . combine d a t a s e t s
35 c o l s = [ '<refCols> ' , '<question> ' , '<answer> ' , '<commonCols> ' , '<categoryCols> ' ]
36 df = df [ c o l s ]
37 data = pd . concat ( [ lsb , bab ] )

Listing 3.1: Simplified data aggregation steps from pbeClean.py

3. Removal of unwanted question types: fill in the blank questions and true or

false questions (line 12).

4. Dropping rows with missing references, questions, or answers (line 16).

5. Extraction of point values from various columns (line 18).

6. Extraction of extra categorical data into separate columns (line 25).

7. Reference extraction from the column containing mixed information (line

30).
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Finally, the lsb and bab Dataframes are joined in the eigth step using a the

concat function. The rest of the script performs data cleaning.

3.3 Data processing

The most important part of training better models as the project progressed was

improving the data the model was trained on. Before and during model training,

we continuously updated the remainder of the pbeClean.py data-cleaning script.

For brevity and clarity, we explain all the cleaning steps and improvements as they

appear in the cleaning script in Listing 3.2.2 The cleaning steps, continued from

Listing 3.1, are as follows:

9. Convert columns to their proper data types and fill in the endVerse column

(line 38).

10. Filter out rows with impossible references (line 42).

11. Standardize point formatting in multi-point questions so that the model only

learns one notation: '(#)'. First we attempt to parse the answers based

on a format assuming points are numbered within the answer (line 44). If

this does not work, we attempt to split the answer on commas or other

punctuation the authors of the example use (not shown).

12. Occasionally, data authors capitalized words such as “NOT” for emphasis.

For the sake of data consistency, we remove this capitalization (line 62).

13. Remove simple instructions about how to answer questions (line 65).
2Note that this code is only representative of the full script found at https://github.com/

MatousAc/qag/blob/main/scripts/pbeClean.py

https://github.com/MatousAc/qag/blob/main/scripts/pbeClean.py
https://github.com/MatousAc/qag/blob/main/scripts/pbeClean.py
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38 # 9 . change column type as necessary
39 data [ ' endVerse ' ] = data [ ' endVerse ' ] . f i l l n a ( data [ ' verse ' ] )
40 data [ ' chapter ' ] = data [ ' chapter ' ] . astype ( np . i n t 6 4 )
41 data [ ' answer ' ] = data [ ' answer ' ] . astype ( s t r )
42 # 1 0 . drop rows where endVerse was parsed as l a r g e r than s t a r t verse
43 data = data [ data [ ' endVerse ' ] >= data [ ' verse ' ] ]
44 # 1 1 . format a l l numbered answers the same : ( # )
45 def formatAnswers ( answer : s t r , a l l e g e d P o i n t s : i n t ) :
46 def processAnswer ( match ) : # l o c a l funct ion f o r process ing each number
47 number = next ( group f o r group in match . groups ( ) i f group i s not None )
48 re turn f ' ({number} ) '
49

50 numRe = r ' ( ? : ( ? : \ ( ( \ d+) \ ) ) | ( ? : ( \ d+) \ . ) | ( ? : ( \ d+) \ ) ) ) \s * '
51 # s u b s t i t u t e d i f f e r e n t formats w/ c o r r e c t format using above funct ion
52 answer = re . sub (numRe, processAnswer , answer )
53 pointCount = countPoints ( answer )
54

55 def countPoints ( answer : s t r ) : # a simple point counting funct ion
56 numRe = r ' \ ( (\d+) \ ) '
57 re turn max( len ( re . f i n d a l l (numRe, answer ) ) , 1 )
58

59 # apply the f u n c t i o n s to the d a t a s e t
60 data [ ' answer ' ] = data . apply ( lambda r : formatAnswers ( r [ ' answer ' ] , r [ ' po ints ' ] ) , a x i s =1)
61 data [ ' points ' ] = data [ ' answer ' ] . apply ( countPoints )
62 # 1 2 . u n c a p i t a l i z e unnecessar i ly c a p i t a l i z e d words
63 capsRe = r ' \b ( [A−Z]{2 ,} ) \b '
64 data [ ' c o l ' ] = data [ ' c o l ' ] . s t r . r e p l a c e ( capsRe , lambda m: m. groups ( ) [ 0 ] . lower ( ) , regex=True )
65 # 1 3 . remove a l l formats and m i s s p e l l i n g s of the Be S p e c i f i c s p e c i f i e r
66 beRe = r ' \s *\ ( ? be\ sspe ( ( c i f i c ) | ( i f i c ) | ( c f i c ) | ( c i f c ) ) \ . ?\ ) ?\ . ?\ s * '
67 data [ ' quest ion ' ] = data [ ' quest ion ' ] . s t r . r e p l a c e ( beRe , r ' ' , f l a g s = re . I , regex=True )
68 # 1 4 . remove any rows with a point −value g r e a t e r than 10

69 data = data [ data [ ' points ' ] <= 10 ]
70 # 1 5 . re turn l o s t quotes
71 data [ ' quest ion ' ] = data [ ' quest ion ' ] . s t r . r e p l a c e ( '<badChar> ' , ” ' ” )
72 # 1 6 . remove ”Do not confuse with verse #” , ' Note : ' and ” D i f f e r e n t from . . . ”
73 dncRe = r ' ( ? : \ ( ? ( ? : ( ? : do not confuse ) | ( ? : note : ? ) ) . * \ ) ? ) | \ ( ( ? : d i f f e r e n t ) . * \ ) \ . ? '
74 data [ ' quest ion ' ] = data [ ' quest ion ' ] . s t r . r e p l a c e ( dncRe , r ' ' , regex=True , f l a g s =re . I )
75 # 1 7 . r e p l a c e s p e c i a l /double c h a r a c t e r s
76 data [ ' answer ' ] = data [ ' answer ' ] . s t r . r e p l a c e (<regexForAllCurlyQuotes >, r ' ” ' , regex=True )
77 # 1 8 . remove surrounding quotes and periods
78 data [ ' answer ' ] = data [ ' answer ' ] . s t r . r e p l a c e ( r ' ˆ ” ( . + ) ”$ ' , r ' \1 ' , regex=True )
79 # 19 remove anything within parentheses or bracke ts t h a t i s not j u s t a point value
80 data [ ' quest ion ' ] = data [ ' quest ion ' ] . s t r . r e p l a c e ( parenRe , r ' ' , regex=True )
81 # 2 0 . f i n a l trimming , s t r ipping , and replacements
82 data [ ' quest ion ' ] = data [ ' quest ion ' ] . s t r . s t r i p ( ) . s t r . r e p l a c e ( ' ? ' , ' ? ' )
83 # 2 1 . r e p l a c e ”None” with ”none” so t h a t these answers are properly loaded next time
84 data [ ' answer ' ] = data [ ' answer ' ] . s t r . r e p l a c e ( r ' ˆ None$ ' , r ' ˆ none$ ' , regex = True )
85 # 2 2 . f i n a l dedupl icat ion based on re ference , question , and answer
86 data = data . drop dupl ica tes ( subset =[ ' book ' , ' chapter ' , ' verse ' , ' quest ion ' , ' answer ' ] )
87 # 2 3 . save to a csv
88 data . t o c s v (<dataDest >, index=Fa lse )

Listing 3.2: Simplified data cleaning steps from pbeClean.py
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14. Filter out questions worth more than ten points, as anything greater is

excessive (line 68).

15. Replace badly-encoded smart quotes with regular ASCII quotes (line 70).

16. Data authors sometimes included hints in their questions for end users.

These generally informed users to “not confuse one verse with another”. The

model tended to overproduce these hints incorrectly, so we removed them all

(line 72).

17. Here we replace non-ASCII characters, primarily curly quotes, with their

ASCII representations (line 75). Due to issues with rendering these char-

acters in LATEX, they are not included. We also fix doubled up quotes and

parentheses here.

18. Some authors excessively quoted all their answers or placed periods at the

end of answers. This step removes these issues from the dataset (line 77).

19. This step removes unnecessary information in parentheses and brackets (line

79). The regex is not included as it is full of quote characters that are not

properly highlighted by listings.

20. After all the above steps are performed, questions and answers may have

spaces or punctuation littering their beginning or end. Thus, we trim and

strip the columns (line 81).

21. This step replaces answers that are literally “None” with “none” so that

pandas will load them as strings in the future (line 83).

22. Finally, we deduplicate the dataset using a subset of its columns (line 85).

This step removes only approximately 0.3% of our data.
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23. We save the dataset as a CSV file (line 87). At this point, the dataset is cleaned

and saved in the format shown in Figure 3.2.

Figure 3.2: The data format after initial cleaning

From this point on, all data processing, model training, and QAG inference is

handled by the family of classes in the src/ folder. This allows various aspects of

input/output cleaning methods and training parameters to be easily changed in

a central location and connected thorough inheritance or dependency. The class

hierarchy is shown in Figure 3.3.

The ConfigBase class is a base class for most of the classes in the src/ folder.

It sets up common configurations, utility f(x)s, and member variables using the

qag.ini configuration file. This configuration file follows the basic section, key,

value format demonstrated in Listing 3.3. This configuration file is then parsed

by the configparser package allowing our program to read the individual values

using python dictionary syntax: value = configParser['section']['key']. The

configuration file controls model and data paths, model prompt templates, training

hyperparameters, evaluation metrics, and more.
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Figure 3.3: UML class diagram for the QAG repository

[ sec t ion ]
key: value

Listing 3.3: The configuration file format

Because we wish to format the PBE dataset similarly to Ushio et al.’s inverted

SQuAD (Figure 3.1), we had to convert Bible verse references into the actual

contexts. The only difference between our format and Ushio et al.’s is that we

include several extra categorical columns and we do not highlight answers within

their contexts using <hl> tokens. Highlighting answers for multiple, potentially

overlapping phrases does not work well when answers are joined during training.

We perform this data transformation from references to contexts using the
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DataProcessor’s pbeContextualize function. This function first internally calls

the constructVerse function and uses the returned verse to fill columns in a

DataFrame before calling data.to_csv(self.destination) to save the data. The

internal function, constructVerse, is more noteworthy because it interfaces with

a DataFrame based on a CSV file containing the entire Bible. On line 2 of Listing

3.4, the function first passes a verse reference through the *args parameter and

then lets the Verse constructor handle storing basic verse information such as the

book, chapter, start verse, end verse, and plaintext reference. If the verse has a

verse before or after it, these verses’ numbers are calculated. Next the a DataFrame

for just the current chapter is extracted from the Bible object and a function for

locating a single verse is defined. Next context verses and the primary verse text

are fetched and combined.

1 def const ruc tVerse ( s e l f , * args ) −> Verse :

2 v = Verse ( * args )

3 # get contex t verse numbers i f a p p l i c a b l e

4 previousNum = v . s t a r t − 1 i f v . s t a r t > 1 e l s e None

5 followingNum = v . end + 1 i f notLast ( v . end )

6 # get verse t e x t

7 chap = s e l f . b i b l e . l o c [ ( s e l f . b i b l e [ ' book ' ] == v . book )

8 & ( s e l f . b i b l e [ ' chapterNumber ' ] == v . chapter ) ]

9 def getVrs (num: i n t ) : re turn chap . l o c [ chap [ ' verseNumber ' ] == num, ' verse ' ] . values [ 0 ]

10

11 v . previous = getVrs ( previousNum ) i f previousNum e l s e ' '

12 v . fo l lowing = getVrs ( followingNum ) i f followingNum e l s e ' '

13 t a r g e t V e r s e s = [ ]

14 v . t e x t = ' ' . j o i n ( [ getVrs ( n ) f o r n in range ( v . s t a r t , v . end + 1 ) ] )

15 v . inContext = f ' {v . previous} {v . t e x t } {v . fo l lowing} ' . s t r i p ( )

16 v . wordCount = len ( v . t e x t . s p l i t ( ) )

17 re turn v

Listing 3.4: Verse construction

Running the pbeContextualize function finally transforms the data into the
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desired format shown in Figure 3.4. Once the data has been transformed into

this standardized format, it can be easily accessed and reformatted. For example,

because HuggingFace requires training data as JSON Lines, we convert file for-

mats from CSV to JSONL by running python dataProcessor -csvToJsonl. This

produces the final data format used for training our QG model.

Figure 3.4: PBE dataset example

For answer extraction, we had to train the base model to extract several po-

tential answers from a single context - thereby addressing QAG’s one-to-many

problem [22]. The format in Figure 3.4 does not directly contain these types of

training examples. It must first be aggregated so that all the answers from a

particular context are concatenated with a special token in one string. This data

transformation is also performed using the DataProcessor via the makeAE function

(see Listing 3.5). First we use pandas to filter the data by the quality currently

specified in the configuration file. Then we aggregate the answers and deduplicate

them so that the model learns to produce diverse answers rather than repeated

ones.

While the Listing 3.5 may appear trivial, it internally uses the answer dedupli-

cation function, aeDeduplicate which is much more complex. Only a simplified
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1 def makeAE( s e l f ) :
2 data = pd . read csv ( s e l f . source )
3 qual i tyThreshold = i n t ( s e l f . cp [ ' dataFormatter ' ] [ ' qual i tyThreshold ' ] )
4 data = data [ data [ ' q u a l i t y ' ] > qual i tyThreshold ]
5 # group answers by verse and remove near d u p l i c a t e s
6 grouped = data . groupby ( ' sentence ' ) . agg ({
7 ' answer ' : lambda x : ' <sep> ' . j o i n ( s e l f . aeDeduplicate ( x ) ) ,
8 ' q u a l i t y ' : 'mean '
9 } ) . r e s e t i n d e x ( )

10 d a t a s e t = Dataset . from pandas ( grouped ) # HuggingFace format
11 d a t a s e t . t o j s o n ( s e l f . d e s t i n a t i o n ) # JSONL

Listing 3.5: Aggregating the dataset for AE training

version is shown in Listing 3.6 for brevity. The primary loop starting on line 22

collects unique answers in the uniqueElems set by looping over each answer and

comparing it to any answers already present in the unique set.

The local function compare is where most of the logic lives. compare determines

whether two answers are different enough to keep both of them, and if not, which

answer to retain. It returns −1 for keeping the left answer, 0 for keeping both, and

1 for keeping the right answer. First, compare checks for identical answers and

then for answers containing the same set of cleaned words. Next, it checks set

length, assuming answers are not similar if their length difference is more than

50% of the smaller answer and more than 3 words. Finally, we calculate the sets’

intersection and compare its size to a threshold value based on answer length.

Answers are considered similar if they intersect “threshold” percent of the time

or do not contain enough unique words for smaller answers. This way, we can

dynamically specify a similarity percentage to deduplicate answers at. We prefer

retaining the slightly longer answer because longer answers tend to include articles

useful for the question generator and longer answers may be split up into multiple

points.

As shown in Listing 3.5, the deduplicated answers are then joined using a

separator and the DataFrame then written to a file as JSON lines. This yields the
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1 def aeDeduplicate ( s e l f , answers ) :
2 answers = l i s t ( answers )
3 def compare ( tex t1 , t ex t2 , threshold = 0 . 7 ) :
4 i f t e x t 1 == t e x t 2 : re turn −1 # i d e n t i c a l
5 # s p l i t t e x t s i n t o words
6 words1 = s e t ( t e x t 1 . s p l i t ( ) )
7 words2 = s e t ( t e x t 2 . s p l i t ( ) )
8 longerText = −1 i f len1 >= len2 e l s e 1 # p r e f e r l e f t
9 i f words1 == words2 : re turn longerText # i f s e t i d e n t i c a l

10 # check length
11 maxLen = max( len1 , len2 ) ; minLen = min ( len1 , len2 )
12 i f abs ( len1 − len2 ) > max( i n t ( minLen * 0 . 5 ) , 3 ) : re turn 0 # not s i m i l a r
13

14 # s e t s i m i l a r i t y check
15 i f maxLen <= 3 :
16 # d i f f e r e n t enough i f each has a word the other doesn ' t have
17 i f len ( words1 . symmetr ic d i f ference ( words2 ) ) >= 2 : re turn 0

18 i f maxLen <= 5 : maxNumSimilarWords = max( maxLen − 2 , 1 )
19 e l s e : maxNumSimilarWords = i n t ( threshold * maxLen )
20 i f len ( words1 . i n t e r s e c t i o n ( words2 ) ) <= maxNumSimilarWords : re turn 0 # not s i m i l a r
21 e l s e : re turn longerText
22

23 # c o l l e c t the bes t unique answers
24 uniqueElems = s e t ( )
25 f o r currAns in answers :
26 addFlag = True
27 f o r uniqueElem in uniqueElems :
28 d e c i s i o n = compare ( uniqueElem , currAns )
29 i f d ec i s i on == 0 : continue # keep uniqueElem , compare current f u r t h e r
30 i f d ec i s i on == 1 : # replacement
31 uniqueElems . remove ( uniqueElem )
32 e l i f de c i s io n == −1 : # skip
33 addFlag = Fa lse
34 break
35 # only add i f d i f f e r e n t from a l l
36 i f addFlag : uniqueElems . add ( currAns )
37 re turn l i s t ( uniqueElems )

Listing 3.6: Simplified procedure for answer deduplication

data format shown in Figure 3.5 and sets up the final data required for fine-tuning.

Figure 3.5: Answer extraction example format
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3.4 Fine-tuning scripts

LLMs are complex. Simply running inference requires significant computing

resources. In fact, LLM training typically requires expensive graphical processing

units (GPUs), Compute Unified Device Architecture (CUDA) configuration, tensor

computation libraries such as torch, adapter integration, training loops, metric

computation, tokenization, input padding, attention masking, binary data format-

ting, and more. Rather than attempting to recreate the state of the art, we will use

the HuggingFace ecosystem of libraries which simplifies training configuration

and execution.

3.4.1 Training Configuration

HuggingFace transformers, published in 2020 [33], allows for easy model and

tokenizer loading and configuration. For example, Listing 3.7 shows how easy

it is to load a four-bit quantized model and its tokenizer within our loadModel

function. Line 2 assigns a configuration object specifying the data type of the

model. Lines 3 through 5 specify that the model should be loaded in four bits,

the quantization (compression) type is “nf4”, and the base model weights should

be treated as PyTorch float16 values during computation. Lines 8 through 12

initialize a model object using a path to the model3 and the bnbConfig created

on lines 2 through 6. device_map="auto" allows HuggingFace transformers to

automatically determine what hardware to execute model computation on. Finally,

line 14 initializes the model tokenizer using the tokenizer.json file in the model

folder, and line 16 returns the model to the caller (important for hyperparameter
3Note that the pretrained_model_name_or_path parameter can also accept a model name

from HuggingFace which it will download at runtime. To avoid this each time we train a model,
we store copies of the LLaMA 2 base models locally.
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1 def loadModel ( s e l f ) :
2 bnbConfig = BitsAndBytesConfig (
3 l o a d i n 4 b i t = True ,
4 bnb 4bi t quant type = ” nf4 ” ,
5 bnb 4bit compute dtype = torch . f l o a t 1 6

6 )
7

8 baseModel = AutoModelForCausalLM . from pretra ined (
9 pretrained model name or path= '<path> ' ,

10 q u a n t i z a t i o n c o n f i g = s e l f . bnbConfig ,
11 device map= ' auto '
12 )
13

14 s e l f . token izer = AutoTokenizer . f rom pretra ined ( s e l f . paths [ ' base ' ] )
15 re turn baseModel

Listing 3.7: Basic configuration for a Causal LM model.

sweeping).

Training arguments and hyperparameters must also be configured before train-

ing a model even if they have not yet been systematically optimized. To set most

of this configuration, the transformers package provides the TrainingArguments

class which is used to configure learning rate, epoch number, GPU configuration,

evaluation metric scales, model checkpointing, and logging.

For example, on line 11 of Listing 3.8, the configuration specifies where to save

the model during and after training. We set the output folder to the Trainer’s

auto-incrementing outputDir member. If we receive new data and wish to rerun

training, the ModelHandler class will automatically determine the next directory

to save the model to such as “7b-chatAE05”, “7b-chatAE06”, and so forth.

The class can be instantiated with various different configuration options

and then is passed into the trainer. Most of our configuration is read from our

configuration file qag.ini and follows the pattern of retrieval and configuration

shown in Listing 3.8 between lines 3 and 13.4 Any settings that are not retrieved

directly from the configuration file (such as self.hyp['weightDecay']) are set

from the hp object which contains values from the configuration file that are
4For the full configureTraining configuration see trainer.py in our public repository.
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1 def conf igureTra in ing ( s e l f , hp ) :
2 # conf igure wandb naming
3 os . environ [ 'WANDB PROJECT ' ] = ' sweep ' i f s e l f . sweeping e l s e s e l f . t r a i n F o r
4 s e l f . t ra in ingArgs = Seq2SeqTrainingArguments (
5 # tunable hyperparameters
6 l e a r n i n g r a t e = hp [ ' l earn ingRate ' ] ,
7 weight decay = f l o a t ( s e l f . hyp [ ' weightDecay ' ] ) ,
8 r e p o r t t o = ' none ' i f s e l f . sweeping or s e l f . mode == ' t e s t ' e l s e 'wandb ' ,
9 run name = os . path . s p l i t ( s e l f . outputDir ) [ 1 ] , # name a f t e r output f o l d e r

10 # output s e t t i n g s
11 output di r = s e l f . outputDir ,
12 e v a l s t e p s = stepSize , # more s e t t i n g s . . .
13 )
14

15 s e l f . loraConf ig = LoraConfig (
16 l o r a a l p h a = i n t ( hp [ ' loraAlpha ' ] ) ,
17 lora dropout = f l o a t ( hp [ ' loraDropout ' ] ) ,
18 r = i n t ( hp [ ' r ' ] ) ,
19 # enable more l o r a l a y e r s
20 b i a s = hp [ ' b i a s ' ] ,
21 target modules = [ f ' { l } p r o j ' f o r l in hp [ ' loraLayers ' ] ]
22 )

Listing 3.8: Basic configuration for a Causal LM model.

optionally overwritten by current sweep variables.

Notice the Weights & Biases integration settings on lines 3 and 8. Weights &

Biases5 (wandb) is a leading AI development platform that stores and visualizes

project metrics such as model performance and configuration. It provides a

Python package named wandb that enables further integration such as automatic

logging during training and hyperparameter sweeping across multiple threads

and multiple devices at once. HuggingFace seamlessly integrates with wandb for

model evaluation logging, system information logging, metric visualization, and

hyperparameter sweeping.

Line 8 specifies that this integration will be used when we are not testing.

self.sweeping is also technically excluded in the block below because starting a

sweep automatically reports to wandb and specifying it again doubles up reporting

processes and breaks the integration. Line 9 sets the run name to the model’s

output directory, such as the “7b-chatAE05” mentioned above. Finally, line 3 sets
5https://wandb.ai

https://wandb.ai
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a project name for the current run. We set this to the trainFor member, which

can be AE or QG, so that our fine-tuning runs are automatically categorized into

two types of fine-tuning experiments. Sweeps are also categorized into their own

project.

Because we plan to only train LoRA [32] for our base model, we had to configure

various LoRA-specific settings. Again, we use the HuggingFace ecosystem because

it seamlessly implements LoRA in the peft library and integrates it with the

transformer reinforcement learning (trl) model-training library. On lines 16

through 21 we specify the α scaling factor, adapter dropout rate, rank r (size) of

the adapter, bias type, and which LoRA layers to train. This is then wrapped in a

LoraConfig object so it can easily be passed to the HuggingFace trainer.

The final step to perform before training is to load and format the training exam-

ples with the DataFormatter. This occurs in three main DataFormatter functions:

load, unpackedProcessing, and formatInput. When the DataFormatter is created,

load creates DataFrames containing the appropriate data based on the trainFor

configuration using HuggingFace datasets’ load_dataset function. Next, the

examples are filtered by the quality specified in qag.ini. Using the method

dataset.train_test_split, the data is then split into training and evaluation sets

that become members of the DataFormatter object.

The unpackedProcessing function, shown in Listing 3.9, is simple. It loops

through the provided rows and creates a list of strings that are used as training

examples. Because the examples parameter provided by the HuggingFace trainer

is a dictionary of lists, we iterate using an index and then let the internal function

locate the correct data row using this index.

Finally, the formatInput function (shown in Listing 3.10), transforms each data

row into a string that the model will train to predict. HuggingFace calls the
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1 def unpackedProcessing ( s e l f , examples ) −> l i s t :
2 o u t p u t t e x t s = [ ]
3 f o r i in range ( len ( examples [ ”answer” ] ) ) :
4 t e x t = s e l f . formatInput ( examples , i )
5 o u t p u t t e x t s . append ( t e x t )
6 re turn o u t p u t t e x t s

Listing 3.9: unpackedProcessing is used by the trainer to set up each plaintext
training example.

1 def formatInput ( s e l f , example , i = 0 , formatFor : s t r = None ) −> s t r :
2 i f formatFor == None : formatFor = s e l f . t r a i n F o r # d e f a u l t
3 i f i s i n s t a n c e ( example [ ' answer ' ] , l i s t ) : # f o r unpacked process ing
4 contex t = example [ ' sentence ' ] [ i ]
5 answer = example [ ' answer ' ] [ i ]
6 i f formatFor == 'QG ' : quest ion = example [ ' quest ion ' ] [ i ]
7 e l s e : # f o r packed process ing or generat ion
8 contex t = example [ ' sentence ' ]
9 answer = example [ ' answer ' ]

10 i f formatFor == 'QG ' : quest ion = example [ ' quest ion ' ]
11 # c o n s t r u c t example
12 template = s e l f . dfCf [ f ' inputTemple{ formatFor} ' ]
13 template = template . r e p l a c e ( '<context> ' , contex t )
14 template = template . r e p l a c e ( '<answer> ' , answer )
15 i f formatFor == 'QG ' : template = template . r e p l a c e ( '<question> ' , quest ion )
16 re turn template . s t r i p ( )

Listing 3.10: formatInput places the context, answers, and questions into the
appropriate input template matching the formatFor parameter

words that go right before the model’s output the response template. In our case,

that would be the something like \#\#\# Generate Question:. We will also call

this the response template. Likewise, we will call the entire format of the input

the input template. This input template is taken from the configuration file and

determines which prompt the DataFormatter should use to prepare the training

data. The DataFormatter takes this input template and interpolates the actual

values for the context, answer, and question.

For example, the input template in Text 3.5 was used early on in AE fine-tuning.

formatInput replaces the <context> placeholder with the row’s sentence column,

the <answer> placeholder with that row’s answer, and if fine-tuning for QG, the

<question> placeholder with the actual question. Note that formatInput also
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accepts a dictionary containing keys and values provided by the caller. This allows

this function to be used for packed processing and generation. Packed processing

involves placing several training examples into a single string separated by end-of-

sequence (EOS) tokens so that several training examples can be executed at once

and training is sped up. While we enable this method of training, we never needed

to utilize it as training proceeded in a timely manner.

<s> ### Extract any nouns, noun phrases, actions, key phrases, and lists that
appear in the following context and return them separated by <sep> . ### Verse:
<context> ### Nouns, noun phrases, actions, key phrases, and lists: <answer>

Text 3.5: An early input template for AE training

3.4.2 Training

With the training arguments set, the LoRA configuration defined, and the data

loaded, the model can begin training. Because LLaMA 2 is trained using Reinforce-

ment Learning with Human Feedback (RLHF), we will use HuggingFace’s trainer

tailored for Supervised Fine-tuning: the SFTTrainer. Listing 3.11 shows the basic

construction and use of this trainer, taken from our own train function.

We provide this trainer with the objects and functions prepared above: the

base model, tokenizer, training configurations, data, and data formatting function.

However, there are also some new parameters. The data collator is responsible

for setting the attention values for each token in the full training example. The

DataCollatorForCompletionOnlyLM object masks all tokens before and including

the self.respTemple, or the response template. When a token is “masked” its

attention value is set to −1 so that the the model does not pay attention to

optimizing for it while backpropagating error. Thus, rather than teaching the

model about the context data provided in the prompt, the fine-tuning process only
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1 c o l l a t o r = DataCollatorForCompletionOnlyLM ( s e l f . df . respTemple , token izer= s e l f . token izer )
2

3 t r a i n e r = SFTTrainer (
4 model = baseModel ,
5 t r a i n d a t a s e t = s e l f . df . t r a i n D a t a s e t ,
6 e v a l d a t a s e t = s e l f . df . evalDataset ,
7 p e f t c o n f i g = s e l f . loraConfig ,
8 format t ing func = s e l f . df . unpackedProcessing ,
9 max seq length = i n t ( s e l f . t ra inConf ig [ ' maxSeqLength ' ] ) ,

10 token izer = s e l f . tokenizer ,
11 args = s e l f . t ra iningArgs ,
12 packing = s e l f . t ra inConf ig [ ' packing ' ] == ' True ' ,
13 d a t a c o l l a t o r = c o l l a t o r ,
14 compute metrics = s e l f . n lgMetr ics i f s e l f . genEval e l s e None ,
15 p r e p r o c e s s l o g i t s f o r m e t r i c s = s e l f . preprocessLogi t s i f s e l f . genEval e l s e None ,
16 )
17

18 t r a i n e r . t r a i n ( )

Listing 3.11: Basic creation and use of the SFTTrainer inside our train function

teaches the model to transform the context into the desired output. In other words,

the model only internalizes the process of transforming the input context to the

output (extracted answers or generated questions), but it does not remember any

of the original context.

Other training configurations allow us to control the maximum output sequence

length and what metric function to report during training. We control whether to

use default or custom metrics using the generativeEval key in the configuration

file.

Once the trainer has been configured, we begin training on line 18. The

SFTTrainer automatically detects available GPUs and distributes model training

across them using PyTorch and CUDA. During model fine-tining, the SFTTrainer

saves model checkpoints and tracks the best version of the model throughout

training. At the end, the trainer saves the best adapter checkpoints so that that

they can be loaded for inference with the Generator.
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3.4.3 Inference

We handle the final process of QAG with our Generator class. Fortunately, where

most pipeline systems would need to handle two models simultaneously, one for

AE and one for QG, our method allows us to load a single base model and two

relatively lightweight adapters. We load the base model with the same logic as

in the trainer (Listing 3.7). Adapters are loaded and labeled with the model’s

load_adapter method in Listing 3.12.

model . load adapter ( adapterLocation , adapter name= '<AE |QG> ' )

Listing 3.12: A simple Python expression for loading adapters

Listing 3.13 shows the Generator’s infer function which handles generation

and extraction of output given the prompt and pipeline stage/adapter name. To

load an adapter, we simply use the set_adapter function on line 3. torch.nograd

simply means that gradients for backpropagation will not be computed during this

inference. This eliminates a useless step and slightly speeds up model generation.

Otherwise, the inference procedure is as expected: input tokenization, model

generation, and detokenization.

To facilitate the the “pipeline” process, the Generator defines a generateQA

function that takes any Verse object and returns a DataFrame of questions and an-

swers. Using the DataFormatter’s formatInput function, generateQA first formats

a model input for answer extraction using Verse objects. The “answer” passed

into the formatInput is an empty string because we want the model to generate

these answers. Next, the generator leverages its infer function to receive output,

it splits the answers apart, and finally filters and cleans them. We have seen the

answer deduplication function before in Listing 3.6, but the function aeFilter is

new. This function simply filters out answers with the following disqualifying
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1 def i n f e r ( s e l f , in f e r e nc e I n pu t : s t r , pipel ineType : s t r ) :
2 s e l f . t imer . s t a r t ( )
3 s e l f . model . s e t a d a p t e r ( pipelineType )
4 modelInput = s e l f . token izer ( inferenceInput , r e t u r n t e n s o r s = ' pt ' ) . to ( ' cuda ' )
5 s e l f . model . eval ( )
6 with torch . no grad ( ) :
7 tokens = s e l f . model . generate ( * * modelInput , max new tokens =100) [ 0 ]
8 output = s e l f . token izer . decode ( tokens , s k i p s p e c i a l t o k e n s =True )
9 s e l f . t imer . stop ( ) # the model ' s job i s done @ t h i s point

10 # only return what was generated
11 response = output . s p l i t ( s e l f . cp [ ' dataFormatter ' ] [ f ' respTemple{pipelineType} ' ] ) [ 1 ]
12 re turn response

Listing 3.13: The generator’s infer function

characteristics:

• a word count over 25

• more than 13 words and only 1 point

• multiple points where an answer for one point is much longer than the

answer to another point

• multiple points that are identical or nearly identical (sometimes the model

would repeat itself between points)

Once the Generator obtains a cleaned, filtered, deduplicated list of answers,

it performs QG for each answer (Line 10 of Listing 3.14). The procedure is very

similar to AE inference except that rather than using the model’s full output,

we just use the text generated up to the first question mark to capture the first

question generated. This question is sometimes the only question generated, and

if not, is always the most relevant question to the provided answer. The final

question is constructed using the generated text, and the point number. The

accumulated DataFrame of questions and their answers is then returned so that it

can be displayed, saved to a file, or sent through an API.
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1 def generateQA ( s e l f , verse : Verse ) −> pd . DataFrame :
2 qa = pd . DataFrame ( columns =[ ' quest ion ' , ' answer ' ] )
3 # AE
4 aeInput = s e l f . df . formatInput ({ ' sentence ' : verse . t ex t , ' answer ' : ' ' } , formatFor = 'AE ' )
5 # s p l i t answers and remove the l a s t one
6 answers = s e l f . i n f e r ( aeInput , 'AE ' ) . s p l i t ( '<sep> ' ) [ : − 1 ]
7 answers = [ a . s t r i p ( ) f o r a in answers ] # c lean whitespace
8 answers = s e l f . dp . a e F i l t e r ( answers )
9 answers = s e l f . dp . aeDeduplicate ( answers )

10 # QG
11 f o r answer in answers :
12 qgInput = s e l f . cp [ ' dataFormatter ' ] [ f ' inputTempleQG ' ]
13 qgInput = s e l f . df . formatInput ({
14 ' sentence ' : verse . questionContext , ' answer ' : answer , ' quest ion ' : verse . r e f + ' , '
15 } , formatFor = 'QG ' )
16 quest ion = s e l f . i n f e r ( qgInput , 'QG ' )
17 quest ion = quest ion . s p l i t ( ' ? ' ) [ 0 ] # only the f i r s t quest ion i s r e l e v a n t
18 ptNum = s e l f . countPoints ( answer ) # count points and prepend
19 quest ion = quest ion . s t r i p ( )
20 quest ion = f ' ({ptNum}pt{” s ” i f ptNum > 1 e l s e ””} ) {quest ion }? '
21 qa . l o c [ len ( qa ) ] = [ question , answer ]
22 re turn qa

Listing 3.14: The Generator’s primary QAG function

3.5 Training Experiments

Collecting data and building all the above classes and functions enables model

training and sets up a basic QAG system. However, many specific questions

about training and inference remain unanswered or entirely unasked. What is

the best way to prompt the model? How many directions does the model need?

Does the model perform better with more or less context? Even with the overall

method determined through research, the best QAG system can only be achieved

through many training experiments and by supplementing even the best model’s

shortcomings with custom algorithms.

We began training both AE and QG models with very specific prompts in

order to try to instruct the model to perform the desired task. For example, our

first AE model, 7b-chatAE00, was trained to respond to the prompt in Text 3.6.

Prior to training, the LLaMA-2-Chat base model could sometimes extract a few

nouns, but the formatting and variety fell far short of the necessary performance
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for the desired use case. With the 00 adapter, the model produced a much more

consistently-formatted list containing important people, places, actions, phrases,

and even some multi-point questions with the correct formatting. The primary

issue with 7b-chatAE00 was that it tended to duplicate the answers it produced

and could not naturally terminate its output, running out of the maximum tokens

it was allowed to generate instead.

<s> ### Extract any nouns, noun phrases, actions, key phrases, and lists that
appear in the following context and return them separated by <sep> . ### Verse:
<context> ### Nouns, noun phrases, actions, key phrases, and lists: <answer>

Text 3.6: An early input template for AE training

To mitigate our first model’s answer duplication problem, we lowered the

similarity threshold in the DataProcessor.aeDeduplicate function and refined the

algorithm to result in fewer, more unique answers in the training data. As expected,

the resulting 7b-chatAE01 model directly reflected the change the training data

and produced less duplicate answers.

The first question generation models, on the other hand, suffered from pro-

ducing unnecessary words and characters after their question. The unprocessed

output in Text 3.7, shows model 7b-chatQG00 attempting to optimize for loss by

overproducing “hints” that were occasionally present in the training data. To fix

this issue with the model, we had to further clean the data. We primarily focused

on removing the notes authors left beside questions using pbeClean.py, shown in

step 16 of Listing 3.2.

Training 7b-chatQG01 on the cleaner data removed the hints in the format

“(Do not confuse with <verse> .)”, but still left stray punctuation marks behind

the question. Moreover, in the place of the hints, the model tried to continue the

context by either continuing or repeating the context.
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### Given the following context verse and answer, write a question for the answer.
### Verse: by so much more Jesus has become a surety of a better covenant. ###
Answer: A surety of a better covenant ### Question: How has Jesus become?.) (Do
not confuse with 7:22a.) (Do not confuse with 7:23.) (Do not confuse with 7:24.)
(Do not confuse with 7:25.) (Do not confuse with 7:26.) (Do not confuse with 7:27.)
(Do not confuse with 7:28.)

Text 3.7: Early output from 7b-chatQG00

Next we trained both models, 7b-chatAE02 and 7b-chatQG02, with custom

tokens added to the tokenizer to see whether tokens with newly-defined meanings

would improve performance. Past QG projects have used various separator tokens

including B, I, and O for “begin”, “continue”, and “end” [2], <sep> [19], * [16],

<answer> and <context> [20], and <hl> [29]. Some of these special tokens are used

to mark output within its context, while others separate the concatenated input

and output.

Lopez et al. [18] report the most controlled special token experiments in QG

using GPT-2. They use three different separation token schemes: special tokens

([SEP]), normal English words, and numbers. Their automatic evaluation indicates

that numbers and special tokens have an advantage over plain text for eventual

performance. However, because LLaMA 2 does not recognize any of these tokens

by default, we introduce our own special tokens: a padding token, the separator

used for separating answers in the AE model, and a highlight token in case we

wanted to more closely match Ushio et al.’s dataset from Figure 3.1 in the future.

To add custom tokens we use our Trainer’s addCustomTokens function shown

in Listing 3.15. Line 8 updates the model’s “token embeddings”. In other words,

the base model is configured to produce a list of 32, 000 probabilities, one for each

token in the tokenizer’s vocabulary. Thus, when we expand the tokenizer, we must

also prompt the model to expand its output by three additional probabilities to
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1 def addCustomTokens ( s e l f , model : AutoModelForCausalLM ) :
2 specia lTokens = {
3 ” pad token ” : ”<pad>” ,
4 ” sep token ” : ”<sep>” ,
5 ” sep token ” : ”<hl>”
6 }
7 numAddedToks = s e l f . token izer . a d d s p e c i a l t o k e n s ( specia lTokens )
8 re turn model . resize token embeddings ( len ( s e l f . token izer ) )

Listing 3.15: Adding custom tokens to the tokenizer and then resizing the model

account for the three additional tokens. Finally, all that is left is to turn on custom

tokens in the configuration file and re-run training.

Unfortunately, rather than improving model output, including custom tokens

greatly reduced the AE model’s capabilities. The answer extraction model failed

to extract even one valid answer or separator. Instead it returned the continuous

output in Text 3.8. The QG output did not improve in any noticeable way either.

### Extract any nouns, noun phrases, actions, key phrases, and lists that appear
in the following context and return them separated by <sep> . ### Verse: But
whoever has this world’s goods, and sees his brother in need, and shuts up his
heart from him, how does the love of God abide in him? ### Potential answers:
His brother in need (the brother in need is his neighbor) and shuts up his heart
from him (he does not help him) how does the love of God abide in him? (it

Text 3.8: Adding custom tokens in 7b-chatAE02 resulted in poor performance

Whether the poor performance was a result of adding custom tokens or of not

properly configuring model training or inference with custom tokens, due to time

limitations and related research, we decided to move forward without utilizing

custom tokens.

As we trained the various early models, we attempted to improve their output

by providing more instructions in their prompt. However, we saw no improvement

in model performance as we improved the prompts. We hypothesized that the

exact prompt content was not as important as the prompt’s consistency from

training to inference. That is, as long as we used the same prompt during inference
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as we provided during training, the model would perform the same transformation

from context to output at inference as it was trained to perform during fine-tuning.

Thus, we trained our next models with less specific prompts. The input

template in Text 3.9 was used for 7b-chatAE03. Reducing the length and specificity

of the prompt did not impact the AE or QG models’ outputs. In fact, the automated

evaluation loss, visualized in Figure 3.6, significantly decreased between the 02

and 03 AE models. The template in Text 3.10 was used for 7b-chatQG03 and did

not noticeably affect model output or loss. Due to their performance and simplicity,

these less instructional prompts were used for the remainder of the project.

<s> ### Extract potential answers to questions and return them separated by
<sep> . ### Verse: <context> ### Potential answers: <answer>

Text 3.9: An input template for AE with less instructions for the model

<s> ### Write a question for the context and answer. ### Verse: <context> ###
Answer: <answer> ### Question: According to <question>

Text 3.10: A generic input template for QG

While prompt specificity had little impact on the question generation models,

training data impacted QG model loss more than AE loss. Thus far, model

training was terminated after 1000 training steps. While this was enough steps to

cycle through the nearly 5000 AE examples, it did not suffice for the 60, 000 QG

examples. Thus, the next models were trained on a full epoch of data rather than

for a specified number of steps. The additional data and reduced evaluation loss

by 0.15 between the 03 and 04 QG models (see Figure 3.7).

Despite the positive results above, the eval loss metric is not ideal for evaluating

question generation. Calculating the loss between a sequence of produced tokens

fails to capture the importance of grammatical correctness, logical sense, word

order, and related word proximity. Therefore, while training our next iteration of
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Figure 3.6: Evaluation loss for most of the AE models trained in this project. Lower
values aim to indicate better models.

models, we supplied custom evaluation metrics to the SFTTrainer which reported

BLEU, ROUGE-L, and METEOR scores.

To calculate these machine translation (MT) metrics, we used HuggingFace’s

evaluate library. Listing 3.16 shows the two functions required to implement cus-

tom metrics while training. The preprocessLogits function deals with reducing

the logits generated by the model into tokens. For each token that the model gener-

ates, the logits object contains an array of non-normalized probabilities the size of

the current tokenizer vocabulary. Each probability in this enormous list represents

the likelihood that the next token in the generated sequence should be the token

with the id that is the index of the probability value within the list. Because higher

values represent higher probabilities, we just pick the index of the highest value in
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Figure 3.7: Evaluation loss for all QG models

the list to get the most probable token id.6 While longer, the nlgMetrics function

is actually simpler to describe. It receives a tuple of predictions and references

(called labels) from the model and decodes them using the tokenizer so that the

MT metrics can process the plaintext predictions and references. On line 9 we

ignore the −100 tokens, as those are the tokens from the prompt and don’t need

to be compared to the references. Next, each metric is loaded with evaluate.load,

calculated according to the HuggingFace evaluate documentation, and stored into

the result dictionary. Finally, we report the results scaled up as values between 0

and 100 as is common in QAG research.

These two functions are then passed to the Trainer’s constructor through the

preprocess_logits_for_metrics and compute_metrics parameters, respectively.
6The dim = -1 parameter specifies to only reduce the deepest arrays, as the logits object is

actually a triply-nested list of many sequences each containing a list of tokens that is itself a list of
probabilities. In machine learning, these last two layers are often referred to as Tensors.

https://huggingface.co/evaluate-metric


73

1 def preprocessLogi t s ( s e l f , l o g i t s : torch . Tensor , l a b e l s : torch . Tensor ) −> torch . Tensor :
2 re turn l o g i t s . argmax ( dim = −1)
3

4 def nlgMetr ics ( s e l f , evalPred ) :
5 preds , l a b e l s = evalPred
6 preds = np . where ( preds != −100 , preds , s e l f . token izer . pad token id )
7 preds = s e l f . token izer . batch decode ( preds , s k i p s p e c i a l t o k e n s =True )
8 l a b e l s = np . where ( l a b e l s != −100 , l a b e l s , s e l f . token izer . pad token id )
9 l a b e l s = s e l f . token izer . batch decode ( l a b e l s , s k i p s p e c i a l t o k e n s =True )

10

11 rouge = evaluate . load ( ' rouge ' )
12 bleu = evaluate . load ( ' bleu ' )
13 meteor = evaluate . load ( ' meteor ' )
14 r e s u l t = {
15 ' rougeL ' : rouge . compute ( p r e d i c t i o n s =preds , r e f e r e n c e s = l a b e l s ,
16 use stemmer=True , use aggregator=True , rouge types =[ ' rougeL ' ] ) [ ' rougeL ' ] ,
17 # get fourth p r e c i s i o n which r e p o r t s bleu −4

18 ' bleu ' : bleu . compute ( p r e d i c t i o n s =preds , r e f e r e n c e s = l a b e l s ) [ ' p r e c i s i o n s ' ] [ 3 ] ,
19 ' meteor ' : meteor . compute ( p r e d i c t i o n s =preds , r e f e r e n c e s = l a b e l s ) [ ' meteor ' ]
20 }
21 r e s u l t = {key : value * 100 f o r key , value in r e s u l t . i tems ( ) } # s c a l e between 0−100

22 re turn r e s u l t

Listing 3.16: Adding custom tokens to the tokenizer and then resizing the model

Figure 3.8 shows the BLEU, ROUGE-L, and METEOR scores calculated during

two QG models’ training. Unfortunately, the figure further casts doubt on the

usefulness of automated metrics for QG model evaluation. While the metric scores

vary across model, they do not improve between the beginning and end of training.

In fact, the BLEU score for 7b-chatAE06 decreases from start to finish even though

it was one of the best AE models this project produced.

This seems to suggest that the base model is equally fit to author questions as

a fully trained one, and that the performance difference between the two models

in Figure 3.8 is due to other settings entirely, such as additional context. However,

as discussed above this is not the case at all. Fine-tuning greatly improved model

output even with the first 00 models. Instead, these metric values indicate the

shortcomings of their own calculation. As is often the case with automated

evaluation of generated text, even evaluation metrics tailored to text generation are

poor indicators of model performance in a specific domain. For completeness, we

report the machine translation metrics for several following models in Figure 3.9.
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Figure 3.8: Automatic MT evaluation for two QG models over their training

Because the metrics did not change significantly over the course of training, we

show only the final values for the metrics and leave further evaluation discussion

for later chapters. Moving forward, decisions about which model performed

“better” during the experiment stage were not made based on these metrics but

rather on manual inspection.

By the sixth and seventh iterations of model training, the input data had been

thoroughly cleaned with the perfected pbeClean.py script and model performance

had generally stabilized. Rather than trying to improve model performance overall,

we focused on solving specific issues with the models. For example, testing the

7b-chatAE06 and 7b-chatQG05 models showed that they underperformed when

their random contexts were especially short. Text 3.11 shows two such handpicked

contexts and the questions that were problematic. In the first example, the QG

model attempts to provide some context in the question itself (something the

training data encourages), but because the context is so short, the model assumes
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Figure 3.9: Final values for MT metrics across several later models

an incorrect fact about the context. Rather than Abdon, Jephthah ruled before

Ibzan. Likewise, the second context assumes Jesus is speaking when in fact the

author is Paul.

Reference: Judges 12:8
After him, Ibzan of Bethlehem judged Israel.
Question: According to Judges 12:8, who judged Israel after Abdon of Ephraim?
Answer: Ibzan of Bethlehem
Question: According to Judges 12:8, who judged Israel after Abdon?
Answer: Ibzan

Reference: Philemon 1:12

I am sending him back. You therefore receive him, that is, my own heart,
Question: According to Philemon 1:12, what was Jesus telling Peter to do?
Answer: Receive him, that is, my own heart
Question: According to Philemon 1:12, what does Jesus tell the Samaritan etc...

Text 3.11: Poor 7b-chatQG05 model output due to very short contexts

In an attempt to solve this issue, we trained one of the next models, 7b-

chatQG07, using the paragraph_sentence column from the dataset rather than

the sentence column used thus far (see Figure 3.4).7 After fine-tuning, we tested
7The paragraph_sentence column contains the verse prior and after the target verse, unless
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this model on the same verses as we had tested 7b-chatQG05. As shown in Text

3.12, providing the question generator with additional context allowed it to use

real, rather than fabricated, facts in the question body.

Reference: Judges 12:8
After him, Ibzan of Bethlehem judged Israel.
Question: According to Judges 12:8, who judged Israel after Jephthah?
Answer: Ibzan of Bethlehem
Question: According to Judges 12:8, who was the next judge of Israel after
Jephthah?
Answer: Ibzan

Reference: Philemon 1:12

I am sending him back. You therefore receive him, that is, my own heart,
Question: According to Philemon 1:12, what does Paul say about Onesimus?
Answer: I am sending him back
Question: According to Philemon 1:12, what does Paul say about Onesimus?
Answer: He is being sent back

Reference: Joshua 18:14

Then the border extended around the west side to the south, from the hill that
lies before Beth Horon southward; and it ended at Kirjath Baal (which is Kirjath
Jearim), a city of the children of Judah. This was the west side.
Question: According to Joshua 18:14, the border of the tribe of Ephraim extended
around the west side to the south, from the hill that lies before what place?
Answer: (1) Beth Horon (2) Kirjath Baal
Question: According to Joshua 18:14, the border of the tribe of Ephraim etc...

Text 3.12: Additional context improved QG for very short contexts but reduced
factual correctness for longer contexts

However, the model also began to fabricate false facts about larger contexts.

For example, in Text 3.12 the context from Joshua makes no mention of a tribe

of Ephraim. In fact, such a concept does not appear in that whole chapter at all.

7b-chatQG07 overall seemed more creative which is not a desirable attribute for

its target application.

the verse is the first or last in a chapter.
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Fortunately, we found a compromise that incorporated the best of both methods.

Adding additional context (excluding highlight tokens) to the 7b-chatQG05 model

for contexts shorter than 15 words produced the same improved results as 7b-

chatQG07. Therefore, future models were trained without the additional contexts

to keep them focused on the context to question transformation, but during

inference, contexts shorter than 15 words were expanded for QG.8

While these changes improved the model with respect to certain types of

contexts, it still struggled not to assume incorrect information in certain cases.

There are sections of the Bible which appear nearly identical. For example, the

author Paul wrote many letters to churches, and most of these letters began with

some variation on “Paul, an apostle of Jesus Christ by the will of God, etc...”.

Because the verse reference in the form of “According to Colossians 1:1, ...” was

only prepended to the question after generation, the question generator sometimes

assumed the wrong book and asked questions about the Galatians based on a

context from Colossians. Futhermore, much of the rest of Paul’s writing does not

contain enough context in a single verse to let the model differentiate between

books. This was especially an issue when other, less prolific authors sounded like

Paul. For instance, Text 3.13 clearly shows the 7b-chatQG089 model mistaking

John’s writing for Paul’s. This issue was also observed within prophetic writings,

and proverbs and psalms.

Introducing the verse reference into the training examples ran the risk of the

model learning to rely on its knowledge of the provided reference. Nevertheless,

our next experiment included verse references in the training data. In order to
8A fortunate effect of our pipelined QAG method is that while we may show additional verses

to the QG model, the question and answer will still focus on the target verse because the AE model
is only shown the target verse.

9This version was identical to the 07 version except that it was trained on a nearly 7000 more
examples that was received later in the project.
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Reference: 3 John 1:14

but I hope to see you shortly, and we shall speak face to face. Peace to you. Our
friends greet you. Greet the friends by name.
Question: According to 3 John 1:14, what does Paul wish on the believers?
Answer: Peace
Question: According to 3 John 1:14, when does Paul hope to see the believers?
Answer: shortly
etc...
Text 3.13: The QG model could mistake one book for another written in a similar
style of writing

retain consistent formatting, we did not modify pbeClean.py (Listing 3.2), which

removes the references from the questions. Rather, we prepended the references in

the DataProcessor’s pbeContextualize function. We then fine-tuned a new QG

adapter with this data and adjusted the inference.

Fortunately, given the same context but this time with the reference, the 7b-

chatQG1010 model no longer made the mistake of assuming the incorrect author

or context. Most importantly, including the context’s reference in the prompt did

not cause the model to primarily rely on its exterior knowledge. Evidently, the

training data had performed its purpose well. Although in Text 3.14 the QG model

does use its broader knowledge to recall the letter’s recipient (Gaius) from much

earlier in the chapter, it does so perfectly. While this behavior is not necessary, it is

helpful when done correctly and sparingly.

Given the recent improvements in QG models and the time limit for this thesis,

this model was the final one to be trained and was used in the evaluation of this

thesis. AE models did not improve much after the 06 version. Some experiments

were performed with AE data that was filtered using the DataProcessor’s aeFilter

function. While these models were more careful about producing long and multi-
10Due to programming errors, the data used to train the 7b-chatQG09 model was accidentally

missing the references during training, so this model was ignored.
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Reference: 3 John 1:14

but I hope to see you shortly, and we shall speak face to face. Peace to you. Our
friends greet you. Greet the friends by name.
Question: According to 3 John 1:14, how are the friends to be greeted?
Answer: By name
Question: According to 3 John 1:14, what does John say to the beloved Gaius?
Answer: (1) Peace to you (2) Our friends greet you (3) Greet the friends by name
etc...
Text 3.14: Introducing context references completely solved the issue with the
model assuming the incorrect context

point answers, they underproduced multi-point questions and sometimes lacked

diversity. Because question volume was more important, very little was changed

in the training of the last model except that it was also trained on the latest data

received later in the project. The final models used in the evaluation of this thesis

were called 7b-chatAE11 and 7b-chatQG10.

3.6 Hyperparameter Optimization

Achieving the best model often involves many experiments with different hyper-

parameters. For example, Goyal et al.’s QAG system [23] is trained at a stable

learning rate of 1x10−4 for 18 epochs. Zhang et al.’s [20] model is instead trained

with a decaying learning rate which begins at 1.905x10−3 and is only trained for

3 epochs. However, both works produce systems that score high (41 and 51 in

ROUGE-L against SQuAD, respectively) in automatic metrics. Thus, even for the

same base model, optimal training strategies may differ from project to project.

One common approach to selecting hyperparameters for a particular project is

to perform an automated hyperparameter sweep [20, 29]. We rely on Hugging-

Face’s integration with wandb to perform hyperparameter sweeps.

Starting a sweep with the Python wandb package is quite simple. There are
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two main components: a sweep configuration and running sweep agents with the

provided sweepID. Listing 3.17 shows the sweep configuration from the sweep.yml

file in our repository.

Lines 1 to 3 determine which project and team wandb should report the logging

information to. The method key determines how the sweep agent will choose the

next hyperparameters for training a new model. The grid method systematically

trains a model with every possible combination of hyperparameter options. The

other options for sweep method are random and bayesian. A random selection of

hyperparameters provides no advantage when we can specify which parameters to

choose from. A Bayesian sweep infers what hyperparameters should be attempted

based on results from previous choices. While a Bayesian sweep sounds the

most logical, it is fundamentally difficult to parallelize and scales poorly to many

hyperparameters. Because we had the option of parallelizing our sweeps, and we

have many hyperparameters with few, discreet options, we chose to sweep with

the grid method.

The metric key refers to the name of the metric that our training script reports

which should be used as the ranking of which group of hyperparameters produces

the best model. For our training, we use the loss on evaluation data, the same

metric shown in Figures 3.6 and 3.7.

Several of the hyperparameters such as learning rate, LoRA dropout, and bias

were explained previously. The new hyperparameters are explained below:

• The rank r determines the size of the matrices in the adapter.

• α is a scaling factor that controls how important the fine-tuning is compared

to the base model’s current weights. Higher values amplify both the good and
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1 p r o j e c t : sweep
2 e n t i t y : matousac
3 name: sweep
4 method: gr id
5 i t e r a t i o n s : 36

6 metric :
7 name: e v a l l o s s
8 goal : minimize
9 parameters :

10 learningRate :
11 values : [ 0 . 0 0 0 1 , 0 . 0 1 , 0 . 1 ]
12 r :
13 values : [ 3 2 , 64 , 128 ]
14 loraAlpha :
15 values : [ 3 2 , 64 , 128 , 256 ]
16 loraDropout :
17 values : [ 0 . 0 1 , 0 . 1 ]
18 bias :
19 values : [ 'none' , 'lora_only' , 'all' ]
20 quali ty :
21 values : [ 5 , 7 , 8 , 9 ]
22 loraLayers :
23 values : [ 'qv' , 'qvk' , 'qvko' ]

Listing 3.17: Adding custom tokens to the tokenizer and then resizing the model

the bad characteristics of fine-tuning data. LoRA α and r are fundamentally

connected because the actual weight scaling value s is calculated as s = α
r .

• quality refers to the data quality threshold for training. At 5 any data

ranked at quality 5 and above is included in training. Thus, as the quality

threshold increases, fewer, higher-quality training examples are included in

training.

• Finally, the loraLayers parameter controls which layers of the adapter are

fine-tuned. The characters “q”, “v”, “k”, and “o” stand for the query, value,

key, and object projection layers, respectively.
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Note that we do not test different values for the “epoch” training argument.

This is because our research showed that training for multiple epochs did not

significantly improve performance. In fact, the publishers of the LLaMA 2 family

of models report that training for multiple epochs leads to over-fitting, impairing

performance [49].

Starting a wandb hyperparameter sweep is simple. As Listing 3.18 shows, the

Trainer’s sweep function simply sets an internal flag, reads the configuration from

the yaml file, and calls wandb.sweep. This provides a sweepID which can then be

passed to one or more agents that start threads executing the function passed

in. Because we have a custom training function, we supply the Trainer’s train

function. It is also useful to specify the number of iterations the agent should

perform so the sweep will complete in a predetermined amount of steps.

1 def sweep ( s e l f ) :

2 s e l f . sweeping = True

3 conf ig = yaml . s a f e l o a d ( Path ( f ' sweep . yml ' ) . r e a d t e x t ( ) )

4 sweepID = wandb . sweep ( config , p r o j e c t = conf ig [ ' p r o j e c t ' ] )

5 wandb . agent ( sweepId , s e l f . t r a i n , count = conf ig [ ' i t e r a t i o n s ' ] )

Listing 3.18: Reading a sweep configuration and beginning a sweep with wandb

Because a grid sweep tests every combination of hyperparameters provided,

the amount of time a sweep takes grows multiplicatively. This becomes an issue

when training each QG model already takes approximately eighteen hours. With

the current configuration in Listing 3.17 the estimated runtime would be over five

years. The first step to reduce sweep time is to limit the number of steps a model

can be trained for. We determined to limit the model training to 200 steps so that

the data and current configuration would have enough influence on the model to

give a good estimate of evaluation loss. This reduces training time to 28 days.

While a great improvement, even this is unrealistic. Luckily, not all hyper-
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parameters need to be part of the same sweep. For example, the data quality

and LoRA layers trained have little effect on the optimal learning rate and the

LoRA α. Because adding runs from two sets of options yields far fewer runs than

multiplying all the options, we divided the hyperparameters into two sweeps. The

first four parameters, learning rate, r, α, and dropout were part for the first sweep

while bias, quality and layers were part of the second. This reduced the sweep

time to four and three days respectively (the second sweep was allowed up to 300

training steps).

The first sweep’s results are visualized in Figure 3.10. The best models have the

lowest loss values and are colored the darkest blue. It is immediately obvious that

the best models have low learning rates. Furthermore, it may initially appear that

the LoRA α and r have little effect on model performance. Dark blue models do

pass through each option for the two parameters. However, when observing the

exact loss values, the models with alpha values larger than the rank were slightly

more successful. Overall, the best model achieved an evaluation loss of 0.8356 and

had the following settings:

• LoRA dropout: 0.01

• learning rate: 0.0001

• α: 256

• r: 64

Figure 3.11 visualizes the second sweep’s results. The models achieved much

more varied loss values than the first sweep’s models. Models trained with more

layers achieved lower loss values. On the other hand, LoRA bias made no difference

whatsoever to model loss. Finally, data quality made a significant impact. Higher
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Figure 3.10: Hyperparameter sweep of LoRA dropout, learning rate, LoRA alpha
scaling factor, and LoRA rank r

quality data improves model performance. However, it is difficult to judge whether

this is only because the model has better training examples or also due to the

reduction of data variety.

Figure 3.11: Hyperparameter sweep of LoRA layer settings, LoRA bias, and data
quality
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The best settings from both hyperparameter sweeps were used for fine-tuning

the last the AE qnd QG adapters, 7b-chatAE11 and 7b-chatQG10.
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Chapter 4

Evaluation Plan

As explained in the State of the Art (Section 2.2), QAG models elude formulaic and

definitive evaluation by nature. This is primarily because automated metrics cannot

adequately take into account the inherent creativity of NLG. Moreover, a single

metric cannot be quickly adapted to varying model goals. Human evaluation, on

the other hand, is subjective and time-consuming. Nevertheless, we utilize the

measures of model success that have prevailed in recent QG research.

4.1 Automatic Evaluation

We have evaluated our final AE and QG adapters using the three automatic

evaluation metrics most commonly seen in QG: BLEU-4, ROUGE-L, and METEOR.

Because these metrics each require references, we have reserved 1, 749 rows (3%)

of our collected data for evaluation purposes.

We do not set specific automated metric “targets” here because these metrics are

not necessarily good measures of model success. For instance, as shown in Table

2.1, the highest BLEU-4 metric reports only 27.21% similarity between candidate
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and reference despite the presence of several capable QG models in the table.

Because we wish to evaluate the QAG system as a whole, we will compare a

complete list of questions and answers produced by the generator to references.

This list looks just like the outputs shown in Text 3.14 for example. While collect-

ing the generator’s output in this form involves trivial string manipulation, the

references must also be aggregated for the comparison. For this processing, we

use another DataProcessor function, aggQAByContext (Listing 4.1). This function

uses the same procedure as pbeContextualize to get verse texts, but then uses the

verse reference columns to aggregate multiple questions and answers into a single

value. We use the newline as a delimiter.

1 def aggQAByContext ( s e l f ) :

2 df = pd . read csv ( s e l f . source )

3 # c o n t e x t u a l i z e DataFrame but keep r e f e r e n c e columns

4 df [ ' qa ' ] = ' Question : According to ' + df [ ' quest ion ' ] + ' \nAnswer : ' + df [ ' answer ' ]

5 df [ ' count ' ] = 1

6 grouped = df . groupby ( [ ' book ' , ' chapter ' , ' verse ' , ' endVerse ' ] ) . agg ({

7 ' qa ' : lambda x : ' \n ' . j o i n ( x ) ,

8 ' count ' : ' sum '

9 } ) . r e s e t i n d e x ( )

10 # save f i l e . . .

Listing 4.1: This function aggregates questions and answers by context

For the actual calculation, we used HuggingFace’s evaluate Python library.

The Generator’s autoEval function (Listing 4.2) handles the automatic evaluation.

First, it divides the dataset into five partitions within a DatasetDict based on

the number of questions and answers contained in each example. We do this

because the reference data we had saved had far fewer questions per context than

the system tended to generate. While the system usually generated between 5

and 10 questions, the aggregated reference data often only had 1 or 2 questions
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1 def autoEval ( s e l f ) :
2 data = l o a d d a t a s e t ( s e l f . paths [ ' data ' ] ) [ ' t r a i n ' ]
3 # s p l i t on counts
4 dsDict = Datase tDic t ( )
5 f o r i in range ( 1 , 5 ) :
6 dsDict [ s t r ( i ) ] = data . f i l t e r ( lambda row : row [ ' count ' ] == i )
7 dsDict [ ' 5+ ' ] = data . f i l t e r ( lambda row : row [ ' count ' ] >= 5 )
8

9 f o r name , d a t a s e t in dsDict . i tems ( ) :
10 verses = [ s e l f . cons t ruc tVerse ( row ) f o r row in d a t a s e t ]
11 l a b e l s = d a t a s e t [ ' qa ' ]
12 preds = [ ]
13 f o r i , v in enumerate ( verses ) :
14 df = s e l f . generateQA ( v )
15 df [ ' qa ' ] = ' Question : ' + df [ ' quest ion ' ] + ' \nAnswer : ' + df [ ' answer ' ]
16 preds . append ( df [ ' qa ' ] . s t r . c a t ( sep = ' \n ' ) )
17 metr ics = s e l f . calculateMTMetrics ( preds = preds , l a b e l s = l a b e l s )
18 # log metr ics . . .

Listing 4.2: autoEval() collects references, generates predictions, and calculates the
MT metrics for five groups of datasets

per context. We hypothesized that this comparison would improve metric scores

for metrics focusing on recall (ROUGE-L) because there is a high chance that the

few questions in the reference will be contained within the many questions in

the prediction. Inversely, this should decrease the scores for metrics that focus on

precision (BLEU-4) because a long prediction will contain many things that the

short reference will not contain. To see this difference in scores across reference

counts, we calculated separate metric scores for references with 1, 2, 3, 4, and 5 or

more questions and answers.

The rest of the autoEval function handles generation using generateQA and

then calculates the metrics using calculateMTMetrics. The code for this function

is virtually identical to 3.16, which was used to automatically evaluate models as

they were training. Finally, the results are logged to a file that we will discuss in

the next chapter.
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4.2 Manual Evaluation

We also perform a human evaluation. Unfortunately, manual evaluation metrics

are even less standardized in QG than automatic ones. The most common metrics

include some measure of overall question acceptability [9, 4, 10, 13, 20] and

grammaticality [14, 10, 15, 3, 8, 29]. Other metrics are often included to measure a

project’s specific goals [10, 21].

Thus, for our manual evaluation, we measured overall question acceptability

and grammaticality. Grammaticality reports the average score for a question and

answer pair’s grammatical structure. Acceptability measures the average score

for how useful the output is for the Bible memorization tournament case study.

These metrics are judged on a five-point scale by domain experts (PBE leaders

and participants) with no direct involvement in this thesis. The five-point scale is

chosen due to its prevalence in other QG literature [14, 15, 3, 29].

In order to help standardize the scale, we described what each rating for

grammaticality and acceptability meant in Texts 4.1 and 4.2. However, we also

left room for personal interpretation because we wanted evaluators to think about

whether the generated questions were useful to them personally.

Grammaticality: Does the question/answer have good grammatical structure, and
does it make sense? Rate from 1-5. Here is basically what each rating would mean.
1: The question/answer makes no sense and includes non-English characters.
2: The question/answer makes no sense but is all in English.
3: The question/answer has mostly grammatically correct phrases, but is discon-
nected and it is difficult to understand what it should be asking.
4: The question/answer is very close to coherent. I would only need to change a
word or two or add a punctuation mark somewhere.
5: The question/answer is grammatically correct and easy to understand.

Text 4.1: The grammaticality scale as described to evaluators

Each evaluator was given a CSV file of approximately 60 questions and answers.
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Acceptability: How useful is the question and answer as a PBE practice question?
Also rated from 1-5.
1: The question makes little to no sense. The answer is not correct. I can’t use this.
2: The question makes some sense but gets certain facts or connections wrong. The
answer is not correct. I can’t use this.
3: I understand what the question is asking, and the answer is at least partially
correct. However, I’d rather discard this question than take the time to try to fix it.
4: The answer is correct for the given question, and I would only need to make
minor adjustments to the pair before using it in PBE. Minor changes might include
changing a few words, removing a part of the answer, or changing the number of
points the question is worth. Overall, I’d rather fix this question than discard it.
5: The question and answer are ready to use as they are. I would make only very
minor changes (adding a missing quote character for example) or no changes at
all before using this question for practice with PBE participants.

Text 4.2: The acceptability scale as described to evaluators

1 def f i l eGen ( s e l f ) :
2 f o r fileNum in range ( 1 1 ) :
3 c o l s = [ ' r e f e r e n c e ' , ' addi t iona lContext ' , ' verse ' , ' quest ion ' , ' answer ' ]
4 qa = pd . DataFrame ( columns = c o l s )
5 while len ( qa ) < 6 0 :
6 verse = s e l f . dp . getRandomVerse ( )
7 currQA = s e l f . gen ( verse = verse )
8 currQA [ ' r e f e r e n c e ' ] = verse . r e f
9 currQA [ ' addi t iona lContext ' ] = verse . inContext

10 currQA [ ' verse ' ] = verse . t e x t
11 currQA = currQA [ c o l s ]
12 qa = pd . concat ( [ qa , currQA ] )
13 qa . t o c s v (< f i l e P a t h >, index=Fa lse )

Listing 4.3: fileGen() generates questions and answers based on random contexts

To generate these files, we used the Generator’s fileGen function. We initially

had 11 individuals willing to evaluate, so we generated 11 files. The question

generation loop simply selects a random verse from the Bible and then generates a

list of questions and answers that is appended to a DataFrame for the current file.

Once the DataFrame had over 60 questions, the results were written to a file. Each

file contains different random questions in order to maximize the diversity of the

contexts tested.

These ratings are then used to report average scores in the next chapter. We also
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asked each evaluator to report the time spent evaluating their questions. These

reports were then used to calculate the time saved by the QAG system.

To estimate the time saved by our system when compared to manual question

authoring we define Equation 4.1. The amount of time taken to write questions by

hand is represented by Toriginal. This is the baseline for Tsaved because if the QAG

system is thorough enough, it should have the potential to save all human effort

spent question writing.

However, because some basic filtering is required to remove inadequate gener-

ations, we subtract Tf iltering which represents the human time taken to filter out

useful from non-useful questions. The “per question” times of Toriginal and Tf iltering

are measured empirically.

Furthermore, we take into account the amount of time taken to fix nearly

acceptable questions - that is, questions ranked 4
5 acceptable. This value is ob-

tained by multiplying the percentage of questions ranked as nearly acceptable

(Qnearly acceptable %) by the time taken to fix them, assumed to be a third of the

average question authoring time. We believe this estimate to be quite conservative

because the majority of writing the question has already been performed for ques-

tions ranked as 4. Changing the point values for an answer or adding/removing a

few words is much easier than identifying information in the context worthy of

asking a question about, and then typing out a question targeting that knowledge

while still including enough context. This time estimate is removed from the

potential time saved. Notice that all less-acceptable questions (questions ranked

lower than 4 in acceptability) are not considered useful for saving time.

If the model fails to generate enough questions, a human may have to write

some by hand, further reducing the time saved. We take this into account by

subtracting the term Toriginal × Qhuman which represents the time a human may
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have to spend authoring questions by hand if the generator does not produce

enough questions on its own. Qhuman refers to the number of questions written by

a human. Note that Qhuman can be zero if for each context the generator produces

as many questions as or more questions than the average human author.

Tsaved = Toriginal − Tf iltering −
(

Qnearly acceptable % × 1
3

Toriginal

)
− Toriginal × Qhuman

(4.1)

In our results, we estimate the total time for writing questions Toriginal for

the next year of PBE based on the book of Romans. Also, notice that we do not

incorporate the time it takes the generator to generate the questions as this takes

no human effort.
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Chapter 5

Results

In this chapter, we present the comprehensive results of our evaluation of the

performance of our QAG system. We begin by discussing the outcomes of our

automatic evaluation, in which we compute the most common machine translation

metrics for the QAG field. We discuss our results and compare them with existing

literature. Subsequently, we delve into the manual evaluation phase, where human

evaluators assessed the grammaticality and acceptability of generated questions.

This phase of the evaluation allows us to estimate the time our system saves end

users.

5.1 Automatic Evaluation

We used the Generator’s autoEval function to calculate the automatic machine

translation metrics BLEU-4, ROUGE-L, and METEOR. The results are shown in

Table 5.1 and visualized in Figure 5.1.

As expected, the score for BLEU-4 steadily increased with the number of

questions and answers in the reference. This is due to the importance BLEU places
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QA Count Sample Count BLEU-4 ROUGE-L METEOR
1 550 5.8584 25.3562 50.9099

2 176 10.8152 34.9804 60.5151

3 122 15.0181 41.8569 65.3382

4 67 18.8245 45.9443 66.3968

5+ 37 23.5294 47.4699 66.2978

Table 5.1: Automated metric results

Figure 5.1: MT metric results as a Score vs. Metric graph. Color represents the
different reference datasets separated by their question and answer count. Size
represents dataset size.

on precision. Because the model generated many questions and answers, reference

datasets with only one question and answer per context naturally had less text

towards which the model could produce “precise” questions and answers.

When there were more questions and answers in the reference, the system’s

output quadrupled its BLEU-4 score. Because the references were human-written

and diverse, this increase in score suggests that the model is also able to produce

diverse questions. Fortunately, as we have seen in previous examples, the system
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is able to produce diverse questions. This is primarily due to the way the pipeline

QAG method translates the one-to-many problem of QAG into a one-to-one QG

problem.

The ROUGE-L score also increased significantly with the question and answer

count. This may be due to there being more n-grams to recall from the reference.

METEOR also improved, though not as much as BLEU-4 or ROUGE-L.

Comparing our results to previous QAG research is not simple even though we

have calculated all three most popular metrics. Although our BLEU-4 and ROUGE-

L scores are comparable with, and our METEOR scores significantly surpass, the

scores reported in Table 2.1, it would be naive to claim that our research has

produced superior models. Not only did we train models for a slightly different

type of QAG, but we also trained and evaluated the system using a different

dataset than most other works, which commonly use SQuAD.

Nevertheless, we can draw some conclusions based on the intriguing difference

in our BLEU-4, ROUGE-L and METEOR scores. While our BLEU-4 and ROUGE-L

scores are not higher than the best reported to date, our METEOR score is nearly

20 points higher than Zhang et al.’s leading score of 49 [20]. Given that METEOR

attempts to match word meanings and semantics, this suggests that our model

is quite experienced in producing the same questions as a human would write

though perhaps not with precisely the same exact words. This difference between

metric scores is expected as the questions in the evaluation dataset were generally

not written by the same authors as those in the training dataset. Thus, although

the model could be said to have a different “writing style” from the references, the

questions and answers produced largely matched those desired.
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5.2 Manual Evaluation

Of the 11 evaluation files sent to evaluators, 5 were completed and returned.1 The

statistics reported below are based on all evaluations joined together with equal

weight. These statistics revolve around the two metrics explained in Section 4.2:

grammaticality and acceptability. In total, 341 questions were manually evaluated.

The average grammaticality score among these questions was 4.5, or 90%. This

compares quite well to Ushio et al.’s 2.3 acceptability score [29] and Liu et al.’s 40%

[8] “well formed” score. We must recognize that these ratings are fundamentally

subjective, but the ratings seem sufficient for our purposes. Although the model

does not always produce sentences with perfect grammatical structure, we never

expected perfection.

Though not as high, our acceptability score also showed promise. At an average

acceptability of 4.0 (80%), our system scored much higher than the best rule-based

QAG systems. Among model-based QAG systems, only Zhang et al.’ report an

acceptability score. Their system yielded acceptable questions 92% of the time

[20]. Liu et al. report a similar relevancy score [8] of 93.7%. Ushio et al. report a

much lower answerability score of 2.8. We were unable to find any other manual

evaluation metrics similar to acceptability. In light of those we do have, our system

seems to rank near the better end of QAG systems, though we certainly have room

for improvement.

One intriguing finding with respect to our manual metrics was that they varied

considerably across different context types. We made this discovery by dividing

the randomly selected contexts in our evaluation into five categories (see Appendix

B.1 for the classifications). Then, we computed the separate acceptability and
1These files are available in the data/evaluation/manual folder on our GitHub repository.
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Figure 5.2: Acceptability and grammaticality per context type

grammaticality scores shown in Figure 5.2.

In Figure 5.2, there are two primary outliers. The grammaticality rating for

gospels is nearly perfect. On the other hand, it appears the model struggles to

generate acceptable questions taken from poetic contexts. This makes sense as

there were no examples from these contexts in the models’ training data. Another

surprise is that the model generates the most acceptable questions for prophetic

contexts. Normally, these contexts would be considered more difficult to write

questions for.

As discussed in our evaluation plan, using the acceptability scores for the fully

and nearly acceptable questions, we calculated the time saved by our method.

The next year of the PBE tournament case study includes the books of Romans, 1

Corinthians and 2 Corinthians. Combined, these books contain 1, 127 verses. Thus,

we used this number to estimate Toriginal from Equation 4.1.

To estimate Toriginal for contexts that have not yet had questions written for

them, we estimated the average human question authoring time. This was done
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using question authoring experiences in the Old and New Testaments from two

separate authors who provided data for this study. Authoring questions from

more “straightforward” passages in the New Testament, such as the book of Luke

tended to proceed at a rate of around to 40 questions per hour. The rate for more

complex portions of books such as Daniel proceeded at a slower 25 questions per

hour. Based on the relative amount of material processed overall, the question

authors estimate 30 questions written per hour, or 2 minutes per question.

Our highest quality data came from Lisa Myaing. For 4, 000 verses, there were

over 15, 200 questions and answers written, yielding approximately 4 questions per

context. This forecasts approximately 4, 250 questions for the contexts in Romans

and Corinthians. At 2 minutes per question, Toriginal represents approximately 141

hours of human labor.

Equation 4.1 also requires the percentage of questions and answers given

specific acceptability ratings. In addition to the percentage of predictions given

a rating of 4 and 5, we report percentages for the other ratings in Figure 5.3.

Combined, questions were ranked at or above 4
5 74.2% of the time.

Because the QAG system produced 6.6 questions per context in our manual

evaluation and 74.2% of those are good enough to be used, we can expect 4.9

useful questions per context. This is significantly higher than the 4 questions per

context present in our data. Thus, we conclude that few to no questions will have

to be written by humans and assign Qhuman a value of 0.

Finally, to estimate Tf iltering we requested our evaluators to report how long it

took them to evaluate the questions they received. For the 341 questions evaluated,

a total of 190 minutes were spent evaluating them. This yields an average of 0.55

minutes per question. Scaled up by the 4, 250 questions estimated to cover the

example’s context, Tf iltering represents approximately 39 hours.
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Figure 5.3: The manual evaluation score distribution

With all the input variables for Equation 4.1 assigned to values, we can calculate

Tsaved. As shown in Equation 5.1, the time saved for authoring questions is

estimated at 85 hours for just one tournament for one question author. This

accounts for 61% of the original time.

Tsaved = 140 − 39 −
(

34.6% × 1
3
× 140

)
− 140 × 0 ≈ 85 (5.1)
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Moreover, Tf iltering is perhaps an unreasonably high estimate. During the

evaluation, the evaluators had to take the time to determine both grammaticality

and acceptability on a 5-point scale. Some evaluators even took the time to explain

why they rated certain questions lower than a 5 which is time already taken into

account by Qnearly acceptable % × 1
3 Toriginal. Normally, a user of our system would

only need to choose whether to keep or discard a question, and occasionally would

fix an imperfect question or answer. If we divide Tf iltering in half, Tsaved becomes

104 hours, or 74.5% of the original question authoring time.
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Chapter 6

Conclusion

6.1 Summary and Objectives

Transformers and large language models have shown promise for natural language

processing tasks, but still face challenges in extractive question generation. To

address this limitation, in this thesis we fine-tuned LLaMA-2-Chat-7b for the

production of high-quality, human-oriented questions and answers.

Several concepts critical to QAG were presented, the most foundational being

NLP, AI, ML, and Transformers. Also, several research works and tools for QG

were explored. However, none satisfied the goals of this thesis, so we used the

latest ideas and technology to construct a QAG system. Various resources were

leveraged to achieve this goal, including the open-source LLaMA 2 base models,

HuggingFace’s LLM-oriented libraries available in Python, and public and private

training data.

After training our models and constructing a simple QAG pipeline, we evalu-

ated the system as a whole using the best standardized metrics available: BLEU-4,

ROUGE-L, and METEOR. Furthermore, we performed a manual evaluation to
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measure the model output grammaticality and acceptability. Not only are both sets

of statistics promising, but future users that have seen the QAG system’s output

have largely praised the system. One simply stated “I’m impressed”. Another user

wrote: “The questions are good. ... [they will] save a question writer a significant

amount of time!”

To determine this project’s success overall, we refer to the objectives set in the

introduction. We have successfully:

• Fine-tuned LLaMA 2 on QAG data

• Generated far more than two questions for each context

• Achieved an average question acceptability score of 4
5

• Reduced the time necessary for question authoring

• Begun the process of making the model publicly available

Out of five objectives, four have been meet or surpassed. The fifth and final

objective is still in progress because tournament administrators have taken an

interest in the system and wish to use it as part of an official Question Generator.

Given these results, we believe we have fulfilled the primary goal of this thesis.

6.2 Future Work

There are a myriad of ways the work done for this thesis could be expanded

and refined. The data could be further cleaned by hand which could only serve

to improve the QAG system. Larger base models could be fine-tuned or larger

adapters could be developed. During our experiments, we did not change the

maximum sequence length at all. Potentially decreasing it for the QG model could
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increase model’s speed without limiting its output, half of which is already being

discarded. Despite the many different approaches that may slightly improve model

performance, we have found two major pieces of future work.

One issue with our AE and QG pipeline method of QAG is that the answers

cannot be easily adjusted to naturally answer the question. For example, consider

that the QG model is provided the answer “writing his thesis” and it generates the

question “Why didn’t Ac get much sleep last night?”. Although the question and

answer have high potential to match, the answer should really read “because he

was writing his thesis”.

One way to mitigate this type of question and answer mismatch is to require

the QG model to repeat the answer after the question and allow its knowledge

of natural language and grammar to potentially improve the answer. Another

approach would be to try end-to-end QAG. Training a model for end-to-end

QAG is the most promising aspect of future work, as it would simply require a

reformatting of data and slightly more generalized code in the Generator, but it

has the potential to solve any issues introduced by pipelined QAG. The primary

drawback to watch out for in end-to-end QAG would be lack of diversity and

number of questions.

The other improvement to this thesis would be to test our system against the

SQuAD dataset to facilitate a slightly different comparison of automated metrics

to past research works. If we trained an end-to-end system using SQuAD, we

could make much more direct comparisons between our scores and those in past

research. This cannot properly be done with our current methodology as the

pipelined system can not train capable AE models on SQuAD data. This type of

comparison would more directly compare the capabilities of the base models with

respect to QAG.
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Given our current success, we will continue to improve our data and attempt to

train better models for our use case. We hope to soon save even more time writing

extractive, comprehensive questions and answers.
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Appendix A

Supplementary Texts

In this conversation I want you to generate questions and answers based on the
source text I give you. The questions should be extractive only. That is, the answer
to any question must be directly found in the source text. Following is an example
of how to format your response based on my input.

- Begin Example
Input:
The LORD spoke to Joshua the son of Nun, Moses’ assistant, saying: ”Moses My
servant is dead. Now therefore, arise, go over this Jordan, you and all this people,
to the land which I am giving to them–the children of Israel.”
Response:
Q: Who is the LORD’s servant and is dead?
A: Moses

Q: Who is the son of Nun?
A: Joshua

Q: Who is Joshua the son of?
A: Nun

Q: Who is Moses’s assistant?
A: Joshua the son of Nun

Text A.1a: The standardized prompt given to models



108

Q: Where does the LORD tell ”you and all this people” to go? (2 pts)
A: 1. over this Jordan 2. to the land which I am giving to them

Q: What two things does the LORD tell Joshua to do? (2pts)
A: 1. arise 2. go over this Jordan
- End example

Try to ask questions in different ways. Ask not only ”What did this char-
acter do?” but also ”what character did this action?” Generate at least 7 questions
for each source text.
The questions should use the same words as are in the source text so that the
person answering would more easily remember the context surrounding the
answer. Include some context from the source text in the question.
Also, if the answer to a question is any sort of a list, make the question multi-point
and number the answers accordingly.
Notice that the answers to questions are short excerpts directly taken from the
source text. They usually won’t be full sentences. If one word answers the
question, one word is all you need to put in your response. Make sure the answer
is not too long.

Your first source text is:
Now it came to pass, in the days when the judges ruled, that there was a famine
in the land. And a certain man of Bethlehem, Judah, went to dwell in the country
of Moab, he and his wife and his two sons.

Text A.1b: The standardized prompt given to models continued

Next source text:
In the beginning was the Word, and the Word was with God, and the Word was
God.

Text A.2a: The contexts provided to the models - John 1:1

Next source text:
He was in the beginning with God.

Text A.3a: John 1:2

Next source text:
All things were made through Him, and without Him nothing was made that was
made.

Text A.4a: John 1:3
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Next source text:
Blessed be the God and Father of our Lord Jesus Christ, who has blessed us with
every spiritual blessing in the heavenly places in Christ,

Text A.4b: Ephesians 1:1
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Appendix B

Additional Figures

Figure B.1: The division of contexts into five categories obtained from biblerr.com

https://biblerr.com/how-is-the-bible-organized/
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