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Introduction 

 The white spruce [Picea glauca (Moench) Voss] is an ecologically and economically 

important tree with a wide range throughout Alaska, Canada, and parts of the northern 

continental United States (O'Connell et al. 2006, Taylor 1993). P. glauca is the state tree of 

South Dakota (as the Black Hills spruce) as well as the provincial tree of Manitoba (Taylor 

1993). Four taxonomic varieties of P. glauca are recognized: P. glauca var. glauca, P. glauca 

var. albertiana, P. glauca var. densata, and P. glauca var. porsildii (Strong and Hills 2006).  

 All varieties of white spruce except var. glauca are commonly thought to be hybrids 

between white spruce and Engelmann spruce (P. engelmannii) (Taylor 1993). Strong and Hills 

(2006) analyzed seed-cone scales in P. glauca and P. engelmannii specimens from 676 locations 

to determine the extent of hybridization between these species. They proposed an emended 

species (P. albertiana) to account for intermediates between P. glauca and P. engelmannii, 

including all varieties of white spruce except P. glauca var. glauca. 

 In this experiment, DNA barcoding will be used to determine the genetic relatedness of 

the white spruce P. glauca var. glauca and P. glauca var. densata, commonly referred to as the 

Black Hills spruce. P. glauca var. densata is an isolated population of white spruce found in the 

Black Hills, South Dakota, and Wyoming (Strong and Hill 2006). Because of the genetic 

isolation of these varieties, we hypothesize that the white spruce (var. glauca) and the Black 

Hills spruce (var. densata) are in fact distinct species. This research uniquely adds to the P. 

glauca classification debate through the introduction of DNA barcoding as a tool of 

investigation. 
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DNA Barcoding  

 Hebert et al. (2003) proposed DNA barcoding as means of rapid species identification 

through the use of a standardized gene region. This short gene region, referred to as a DNA 

barcode, must be found in all specimens under study and must contain sufficient variation to 

allow for differentiation between species. DNA barcodes can be used to identify a species by 

amplifying the barcode from a small piece of DNA from an unknown organism and comparing it 

to the sequences of known species. This procedure is becoming increasingly important for the 

classification and identification of species in modern taxonomy (Kress 2007).  

Barcoding has been used extensively in the animal kingdom, facilitated in large part by 

development of a universal DNA barcode. This animal barcode is a mitochondrial gene known 

as cytochrome c oxidase I (COI or cox1) (Herbert 2003). Mitochondrial DNA in plants, 

however, contains too low of variation between species to be used as a reliable barcode in these 

organisms (Fazekas et al. 2008). A number of gene regions have been proposed as potential plant 

barcodes, but a universal barcode remains controversial. Most of the proposed barcodes come 

from the plastid region of the plant cells (Kress et al. 2005; Newmaster et al. 2006; Lahaye et al. 

2008).  

 This research endeavor examined the gene sequences of five different potential barcoding 

genes from Picea glauca var. glauca and Picea glauca var. densata specimens. The five gene 

regions investigated were rpoC1, rpoB, matK, trnH-psbA, and rbcL. Chase et al. (2007) proposed 

the first four of these regions as useful barcodes. The four regions were suggested for use in two 

different combinations (1) rpoC1, rpoB, and matK or (2) rpoC1, matK, and trnH-psbA.  

The trnH-psbA region is an intergenic spacer region found in plastid DNA. This region is 

non-coding and was originally suggested as one of the two leading candidates for barcoding 
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regions in angiosperms (Kress et al. 2005). Later research alternatively suggested the use of rbcL 

as a core barcoding gene (Newmaster et al. 2006). Researchers felt that the difficultly in aligning 

sequences in trnH-psbA above the genera rank (as reported in Kress et al., 2005) made the trnH-

psbA gene region a poor choice for a single universal barcode. They instead suggested a tiered 

approach using a primary barcode to differentiate between highly-divergent specimens and a 

more specific secondary barcode to differentiate at the species level. The rbcL gene was tested as 

a potential primary core gene and found to be an acceptable gene region for this task. The 

barcoding gene has several advantages such as its ease of amplification and alignment. This gene 

is also the most characterized plastid coding region in GenBank, a widely-used gene sequence 

database (Newmaster et al. 2006), allowing researchers easy access to a large number of 

sequences from a variety of plant species.  

Kress and Erickson (2007) proposed the use of rbcL with trnH-psbA as a global plant 

barcode. This combination was chosen after testing nine potential barcode loci across 48 genera. 

With this combination, the researchers reported nearly 88 percent success in species 

differentiation in their test specimens. More recently the matK gene was proposed as a universal 

DNA barcode for flowering plants (Lahaye et al. 2008).  Fazekas et al. (2008) reported in their 

study that though matK provided the highest species resolution of any of the single regions they 

tested, its success was complicated by its relatively low amplification rates. The gene region 

rbcL was the only region amplifiable in all test subjects and generally sequenced the easiest. The 

rbcL region, however, showed significantly less sequence variability (along with the other 

coding regions) than matK or the non-coding regions. The researchers thus proposed that 

multiple gene regions should be used in a barcoding protocol. They suggested a combination of 



James 4 

genes from the coding genes rbcL, rpoB, and matK as well as the non-coding regions trnH-psbA 

and atpF-atpH. 

The Consortium for the Barcode of Life (CBOL) was formed in 2004 to develop DNA 

barcoding as a standard for species identification (Ratnasingham and Hebert 2007). CBOL now 

includes over 120 organizations in 45 countries. In August 2009 the CBOL’s Plant Working 

Group published rbcL and matK as their chosen 2-locus universal plant barcode. The research 

data, however, revealed greater success in obtaining rpoB, rpoC1, and trnH-psbA from 

gymnosperms than matK (CBOL’s Plant Working Group 2009). For this reason, rpoB, rpoC1, 

and trnH-psbA were included in our research along with the prescribed 2-locus universal plant 

barcode of rbcL and matK. 

 

Materials and Methods 

 Plant specimens were obtained from their native environments. A white spruce (var. 

glauca) and two black spruce (Picea mariana) specimens were collected by Dr. Lee Spencer 

from Inuvik, Northwest Territories, Canada. Five Black Hills spruce (var. densata) specimens 

were collected by Dr. Spencer from the Black Hills in South Dakota. The plants were processed 

in a research laboratory in Hickman Science Center at Southern Adventist University. After 

reaching the lab, specimens were stored at -80 degrees Celsius to minimize DNA degradation. 

DNA was extracted from needle and/or cone samples for each specimen using the PowerPlant™ 

DNA Isolation Kit (MO BIO Laboratories, Inc.) and the ZR Plant/Seed DNA Kit™ (Zymo 

Research). DNA extracts were analyzed with standard gel electrophoresis using 1.5% agarose in 

TAE (Sambrook et al. 1989). Gels were stained using ethidium bromide at a concentration of 

2.5µg/ml to visualize DNA (Sambrook et al. 1989). Stained gels were analyzed with a UVP EC3 
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documentation system equipped with VisionWorks Software located at Southern Adventist 

University. 

 Following successful isolation of DNA, matK, rpoB, rpoC1, rbcL, and trnH-psbA gene 

regions were amplified for each extract using polymerase chain reaction (PCR) protocols as 

outlined by the Royal Botanical Gardens, Kew (http://www.kew.org/barcoding/protocols.html). 

PCR uses specific primers to amplify desired segments of DNA from the volume of DNA 

extracted from each plant. Through cycles of heating and cooling, the primers anneal to the 

DNA, and a heat-resistant DNA polymerase replicates the specific genes. After many cycles, 

sufficient copies of the gene sequences are made to be analyzed further.  

 After completion of PCR, the amplified chloroplast gene segments were separated using 

standard gel electrophoresis and analyzed in the same manner as the original DNA extracts. PCR 

products which were successfully amplified were outsourced to a commercial laboratory 

(Macrogen, Inc.) for DNA sequencing. Sequence alignments were completed using Geneious 

Pro 4.8.5 software. The sequence database program GenBank, accessed via Geneious, was used 

to obtain and compare sequences from other researchers (where available) to increase the  

validity of experimental data.  

 

Results 

 

The matK gene 

The matK region proved the most difficult to amplify of all five gene regions analyzed. 

Of the eight spruce specimens examined, only one (P. glauca 1) yielded a quality matK 

sequence. Three additional white spruce (P. glauca) and two additional black spruce (P. 
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mariana) sequences were obtained from GenBank for comparison. Alignments with these six 

total matK sequences revealed a distinct pattern of four nucleotide differences between black 

spruce and white spruce specimens (Fig. 1). Note that the very ends (~75-175 nucleotides) of  

 

Figure 1. Alignment of matK gene sequences 
Alignment of four white spruce (P. glauca) and two black spruce (P. mariana) sequences revealed a pattern of four nucleotide 
differences (~ nucleotides 390-530 above) which distinguished between these species. Sequences labeled GB were retrieved 
from GenBank. P. glauca GB1 through GB3 correspond to GenBank accession numbers EU749471 through EU749473. P. 
mariana GB1 and GB2 correspond to EU74974 and EU74975, respectively.  

the matK sequences showed significant variability (partly due to sequence quality at distant ends) 

and thus were not used during analysis. No Black Hills spruce sequence data for matK was 

available for comparison.  

 

The rpoB gene 

Sequences for the rpoB gene region were obtained from three of the eight spruce 

specimens. A total of eight sequences (four using forward primers and four using reverse 

primers) were obtained from these three specimens. Four white spruce and two black spruce 

rpoB sequences were additionally retrieved from GenBank. Alignments with the experimental 

and GenBank specimens revealed nearly identical nucleotide sequences for white spruce, black 

spruce, and Black Hill spruce specimens (Fig. 2). 
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Figure 3. Alignment of rpoC1 gene sequences 
Alignment of four white spruce (P. glauca) and one black spruce (P. mariana) specimens revealed nearly identical sequences for 
the rpoC1 gene sequence. Sequences labeled GB were retrieved from GenBank. P. glauca GB1 through GB3 correspond to 
GenBank accession numbers EU750383 through EU750385. P. mariana GB1 corresponds to EU750386.  

 
 

Figure 2. Alignment of rpoB gene sequences 
Alignment of five white spruce (P. glauca), two black spruce (P. mariana), and one Black Hills spruce (BHS2) specimens 
revealed nearly identical sequences for the rpoB gene sequence. Sequences labeled GB were retrieved from GenBank. P. glauca 
GB1 through GB4 correspond to GenBank accession numbers EU749242 through EU749245. P. mariana GB1 and GB2 
correspond to EU749246 and EU749247, respectively.  

 

The rpoC1 gene 

Sequences for the rpoC1 gene region were obtained from three of the eight specimens 

examined. A total of seven sequences were determined for these three specimens. GenBank 

provided an additional three white spruce and one black spruce rpoC1 sequences. As with rpoB, 

alignments with rpoC1 revealed nearly identical sequences for the white spruce and black spruce 

specimens examined (Fig. 3). No Black Hills spruce data was available for this gene. 

 

 

 
The rbcL gene 

 The rbcL gene region, the most successfully sequenced locus, was obtained for seven of 

the eight specimens studied. A total of eleven sequences were obtained from these specimens in 

addition to four white spruce and two black spruce sequences retrieved from GenBank. Initial 
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comparisons between white spruce and black spruce from GenBank showed 99.5% pairwise 

identity which at first raised concerns about the effectiveness of this barcode for species 

differentiation. Alignments for all rbcL sequences obtained, however, revealed a distinct three 

nucleotide difference between black and white spruces (Fig. 4). The Black Hill spruce rbcL 

sequences (BHS2 through BHS4) showed the identical pattern of white spruce sequences at these 

three nucleotide locations.  

Figure 4. Alignment of rbcL gene sequences 
Alignment of five white spruce (P. glauca), four black spruce (P. mariana), and three Black Hills spruce specimens revealed a 
pattern of three different nucleotides (~ nucleotides 250-280 above) between white spruce and black spruce. Black Hills spruce 
specimens were indistinguishable from white spruce based on this pattern. Sequences labeled GB were retrieved from G
P. glauca GB1 through GB4 correspond to GenBank accession numbers EU677080 through EU677083. P. mariana GB1 and 
GB2 correspond to EU677084 and EU677084, respectively. 

enBank. 

 

 
The trnH-psbA intergenic spacer 

 The trnH-psbA intergenic spacer region was obtained for five of the eight spruce 

specimens studied. Nine sequences were obtained from these five specimens which included a 

white spruce, a black spruce, and three Black Hills spruce. Four white spruce and two black 

spruce were additionally retrieved via GenBank. Alignment of trnH-psbA sequences revealed 

two distinct differences between black spruce and white spruce specimens. First, the black 

spruces lacked a distinct five nucleotide segment found in white spruce sequences (Fig. 5). 

Second, there was a single nucleotide difference present between the black and white spruces 
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found in each sequence evaluated (Fig. 5). Black Hills spruce sequences (BHS2-BHS4) showed 

identical patterns as white spruce sequences at these two locations. A couple other regions 

showed slight variability, but the differences were not consistent within species and thus could 

not be used for species differentiation.  

 
Figure 5. Alignment of trnH-psbA intergenic spacer sequences 
Alignment of five white spruce (P. glauca), three black spruce (P. mariana), and three Black Hills spruce specimens revealed a 
five nucleotide segment (~ nucleotide 275 above) missing in black spruce samples but present in white spruce and Black Hills 
spruce sequences. There was also a distinct single nucleotide difference present (~ nucleotide 550 above) between these two 
groups. Sequences labeled GB were retrieved from GenBank. P. glauca GB1 through GB4 correspond to GenBank accession 
numbers EU750621 through EU750624. P. mariana GB1 and GB2 correspond to EU750625 and EU750626, respectively.

 
 

Discussion 

Of the five potential barcoding regions analyzed, matK, rbcL, and trnH-psbA showed 

potential as effective barcodes within the Picea genus. In each case, these three barcoding 

regions revealed distinct differences between black spruce (P. mariana) and white spruce (P. 

glauca). These differences of three to six nucleotides initially seemed fairly insignificant when 

compared to the 400-800 nucleotide sequences, but detecting these small but consistent 

variations was critical to using barcoding sequences effectively.  

The remaining regions, rpoB and rpoC1, were not variable enough to differentiate 

between the separate species of white and black spruce. This inability indicated that rpoB and 

rpoC1 may not be effective as barcoding regions, especially within genus Picea. Because of their 
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inability to distinguish between two known distinct Picea species, these barcoding regions were 

unable to be used to provide meaningful analysis of the relationship between the white spruce 

(Picea glauca var. glauca) and Black Hills spruce (Picea glauca var. densata). 

Though matK showed potential as an effective barcode, difficulty in obtaining matK 

sequences prevented comparison of Black Hills spruce specimens. These results are consistent 

with earlier studies which showed the lowest amplification success of matK in gymnosperms 

when compared to rpoB, rpoC1, rbcL, and trnH-psbA (CBOL’s Plant Working Group 2009). 

The challenges associated with obtaining matK sequences may inhibit its potential effectiveness 

as a barcode. Further perfection of extraction/amplification procedures appear to be necessary to 

increase the effectiveness of this barcoding region. As matK is one of the two barcoding regions 

proposed as the 2-locus universal plant barcode (CBOL’s Plant Working Group 2009), 

increasing amplification success in this gene region is crucial to improving barcoding efforts as a 

whole. 

Analysis of the relationship between white spruce and Black Hills spruce was obtained 

through alignments with rbcL and trnH-psbA. Both of these barcoding regions showed 

indistinguishable sequences for white spruce and Black Hills spruce specimens. These results 

indicate that Black Hills spruce (var. densata) is not in fact a genetically distinct species from 

white spruce (var. glauca), contrary to the initial hypothesis. These results support the current 

classification of Black Hills spruce as a variety of white spruce. 

DNA barcoding is becoming an increasingly important tool for the identification of plant 

species for taxonomic and other practical purposes. As barcoding protocols are developed, it will 

continue to be important to obtain sequences for putative barcoding regions from a large variety 

of plant specimens. In this experiment, the use of five major potential barcoding regions allowed 
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for comparison between specimens at several loci. As the barcoding controversy continues to 

unfold, the results of this experiment provide addition evidence to determine which loci provide 

the most accurate means of identification and differentiation among Picea specimens.  

Obtaining the sequences for matK, rpoB, rpoC1, rbcL, and trnH-psbA in this experiment 

also created a bank of known sequences for further research. This base of known sequences 

could allow for more rapid identification of Picea specimens in the future as well as potential 

identification of new Picea species. Identification and sequencing of these barcoding genes is 

essential to the continual improvement of DNA barcoding accuracy and efficiency. 
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