Southern Adventist University KnowledgeExchange@Southern

Graduate Research Projects

School of Nursing

12-2014

The Human Microbiome: The Brain-Gut Axis and its Role in Immunity

Vanessa Moser

Follow this and additional works at: https://knowledge.e.southern.edu/gradnursing Part of the <u>Nursing Commons</u>

Recommended Citation

Moser, Vanessa, "The Human Microbiome: The Brain-Gut Axis and its Role in Immunity" (2014). *Graduate Research Projects*. 7. https://knowledge.e.southern.edu/gradnursing/7

This Article is brought to you for free and open access by the School of Nursing at KnowledgeExchange@Southern. It has been accepted for inclusion in Graduate Research Projects by an authorized administrator of KnowledgeExchange@Southern. For more information, please contact jspears@southern.edu.

The Human Microbiome: The Brain-Gut Axis and its Role in Immunity

Vanessa E. Moser, RN, BSN

December 5, 2014

A Paper Presented to Meet Partial Requirements

For NRSG-594

CAPSTONE

Southern Adventist University

School of Nursing

Chapter 1: INTRODUCTION

The human gastrointestinal tract is inhabited by over ten trillion microorganisms. These cells outnumber the cells in our body by tenfold and contain about 150 times as many genes as the human genome (Collado et al., 2012). While 75% of the phyla in the gut have been identified, largely in part by the Human Microbiome Project, 25% is still unknown. These cells facilitate a complex interaction between the intestinal microbiota, the gut, and the central nervous system that is being branded as the microbiome-gut-brain axis. This system plays an integral role in human health as homeostasis of microbiota in the gut regulates nutrient utilization, gut barrier function, and immune development; so much so that gut bacteria is responsible for 60-70% of immune system function (Mayer, 2011).

The microbiome-brain-gut axis functions as a bi-directional pathway between the nervous system and the digestive system. An alternate nervous system -the enteric nervous system-is being referred to as the "second brain" based on its size, complexity and similarity in neurotransmitters and signaling molecules with the brain (Mayer, 2011). Therefore, the bi-directional signaling that occurs between the gut and brain in regulating homeostasis can ultimately lead to disease processes such as inflammatory bowel disease, autism, and major depressive disorder. Alterations in the microbial composition of the gut, or dysbiosis, has also been implicated in increased risk of atopic diseases (such as allergic rhinitis, asthma), and celiac disease. Reduced bacterial diversity has been associated with obesity and reduced glucose tolerance (Koren et al., 2012).

Microbiota diversity is affected throughout the lifespan from conception to old age. According to Collado et al., (2012), the fetal programming hypothesis states that "maternal exposures during pregnancy may induce long lasting or permanent changes in fetal physiology and thereby impact disease risk later in life." Microbiota in the infant depends on first inoculums, mother's microbiota, mode of delivery, type of feeding, and the environment, including weaning food practices and the use of antibiotics. Preterm, formula fed, c-sectioned, and those infants who required antibiotics and or intensive care treatment are implicated in cases of diarrhea, necrotizing enterocolitis, and even neonatal sepsis, due to decreased microbial diversity. As the human is exposed to infection, disease, diet, aging, and antimicrobials, the microbiome tends to revert to the diversity established in infancy without intervention (Dinan& Cryan, 2012). Consequently, scientists began investigating the use of probiotics as a means to reestablish homeostasis of gut flora and evade irreparable damage. This literature review will discuss the impact of the stress response on the gastrointestinal tract, with special focus given to the role of stress in the pathophysiology of common diseases affecting bowel to behavior; and the therapeutic role of probiotics as mainstay treatment.

Definitions

Comprehension of the complex *microbiome-brain-gut axis* (BGA) is necessary to realize its implications in the following literature review. The BGA includes the central nervous system (CNS), the neuroendocrine and neuroimmune systems, the sympathetic and parasympathetic arms of the autonomic nervous system, the enteric nervous (ENS) system, and the intestinal microbiota. This bidirectional network enables signals from the brain to influence the motor, sensory and secretory modalities of the gastrointestinal tract (GIT) (Konturek et al., 2011). Conversely, messages from the gut influence stress regulation in the brain via the hypothalamus (Dinan & Cryan, 2013). Stress causes changes in the composition of the microbiota, inducing changes in neurotransmitters (i.e. corticotrophin releasing factor, CRF) and proinflammatory

Running Head: GUT AND DISEASE

cytokine levels, modulating motility, permeability of the epithelial barrier, and visceral sensitivity. Glucocorticoids (i.e. cortisol/aldosterone) released from adrenal glands through activation of the *hypothalamic-pituitary-adrenal* (HPA) axis impact the immune system. *Proinflammatory cytokines* (i.e. interleukins and TNF alpha) stimulate the *vagus nerve*, which innervates areas of the gut, thereby, playing an integral part of the BGA communication between the gut microbiota and the HPA. Once CRF is released, the pituitary gland consequently releases adrenocorticotropic hormone (ACTH) to stimulate the release of cortisol by the adrenal glands. Serotonin (5-HT) and noradrenaline are other neurotransmitters essential to BGA signaling.

The following literature review will also discuss several other neurotransmitters, neuromodulators, and catecholamines that also affect the BGA. *Brain derived neurotrophic factor* (BDNF) is crucial for supporting neuronal survival and encouraging the growth and differentiation of new neurons and synapses and thus is involved in the regulation of multiple aspects of cognitive and emotional behaviors (Cryan & O'Mahony, 2011). *GABA* is the main inhibitory neurotransmitter of the CNS, which is mediated by GABA_A and GABA_B, which are pharmacological targets for anxiolytic agents (Bravo et al., 2011). Norepinephrine can increase the virulence of bacteria, E. coli.

This literature review will also discuss the therapeutic effects of probiotics, prebiotics, and fecal transplants with the preceding. *Probiotics* are live microbial organisms that beneficially affect the host animal by improving its intestinal microbial balance, as defined by the father of immunology, Elie Metchnikoff (Caepa et al., 2013). He theorized that lactic-acid producing bacteria could suppress the growth of autointoxicating bacteria, thereby, providing longevity of life. Rather, probiotics do not replace pathogens, but increase bacteriocins that inhibit bacterial translocation, enhance mucosal barrier function, generating signals within the gastrointestinal

4

tract's epithelium and immune system (Quigley, 2008). According to Tannock (as cited in Blaser, 2003), *prebiotics* can be defined as non digestible carbohydrates that benefit the host by selectively stimulating the growth and activity of bacteria in the colon. *Fecal transplantation* can be described as infusion of microbiota via various methods: gastric lavage, endoscopy, oral ingestion.

Theoretical Framework

The Health Belief Model (HBM) will serve as the theoretical framework for this literature review. The HBM was developed in the 1950s by the U.S. Public Health Services as a means of explaining low participation in prevention programs. The model theorizes that a person's perception of four areas- 1) severity of potential illness, 2) susceptibility to that illness, 3) benefits of preventative action, and 4) barriers to action- will drive health behaviors (Glanz et al., 2008). From a nursing standpoint, the utilization of the HBM is appropriate because it focuses on patient compliance and preventative health care practices. As it relates to gut health, there are many things that affect a person's microbial diversity, and have the potential to cause disease. However, many people are not aware of the existence of the BGA or what actions to take and avoid to ensure its prosperity. Ultimately, the patient's perception of the four aforementioned areas will determine their health behavior in regards to prevention and treatment of dysbiosis. This literature review will seek to describe the many possibilities affecting microbiota health and serve as information that nurse practitioners can utilize to educate and treat their patients, within the context of primary, secondary, and tertiary prevention.

Purpose Statement/PICO Question

In order to explore this phenomenon, a two-fold research question was formulated using the PICO-style format:

Throughout the lifespan, what are the principle concerns of dysbiosis and can probiotic treatment reverse its effects, as opposed to no treatment?

Chapter 2: LITERATURE REVIEW

Although numerous studies have been conducted regarding the BGA, it remains a veiled topic. Recently though, the BGA and its implications have garnered more attention as scientists grapple to explain the increase in prevalence of autoimmune disease and other disorders. This section will examine the most recent findings regarding dysbiosis and the BGA, and the effects of probiotic treatment. The goal was to identify modifiable risk factors in an effort to reduce the rate of occurrence of dysbiosis, thereby, decreasing the occurrence of disease & disorder, adverse outcomes, and associative costs.

For this literature review, useful key search terms included "microbiota," "brain-gut axis," "dysbiosis," "behavior," "disease," and "probiotics." Sources utilized in obtaining journal articles and other information dated from 2008 to the present. Cumulative Index to Nursing and Allied Health Literature (CINAHL) database, EBSCO Host, SciDirect, and Google Scholar were all utilized in retrieving journal entries. Several different sites were accessed for pertinent information- *Current Nursing, CDC, WHO, NIH*, and *Science Magazine*.

Methods and Results from Literature

Dysbiosis in rodents. Many studies have been conducted using rat/mice experimentation in regards to BGA, leaving few available research studies conducted on actual human patients to review. These preliminary studies still have great health implications, however.

Probiotics. Strains of Lactobacillus and Bifiobacterium were mainly used to display the effects of good microbiota on the gut using several testing methods to determine the stress response, thus confirming the presence of a brain-gut connection. In a study by Ait-Belgnaoui et al. (2012), female Wistar rats were either given a 2 week administration of *L.farciminis*, treated

with ML-7, or treated with an antibiotic, in an effort to demonstrate a deregulation in stress response, thereby, preventing "leaky gut." L.farciminis, in fact, enhanced the epithelial barrier decreasing enteric permeability, and attenuating the stress response by the HPA axis. Similarly, Bravo et al. (2013) treated 36 BALB/c mice with L.rhamnosus for 28 days, and then exposed them to stress testing. Treated rats displayed improved memory, and reduced levels of corticosterone. The bi-directionality of the BGA was further confirmed when vagomotized mice failed to exhibit neurochemical or behavioral effects, identifying the vagus as a major modulatory pathway between the gut and brain. Desbonnet et al. (2010) investigated the antidepressant effects of *B.infantis* compared with citalopram in rats exposed to a Forced Swim Test (FST). Interestingly, B.infantis induced an elevation in the neurotransmitter serotonin (5-HT), implicating microbiota in the regulation of CNS and ENS. Bercik et al. (2011), Gareau et el. (2011), and Neufeld et al. (2011) explored the concept of the germ-free (sterile) paradigm and how enteric microbiota affects behavior and brain biochemistry as compared to specific pathogen free (SPF) mice in their studies. In a study by Neufeld et al. (2011), SPF mice and GF mice were simply exposed to a stressor, the elevated plus maze (EPM). The presence or absence of microbiota was proven influential in the development of behavior and neurochemical changes when GF mice exhibited anxiety in comparison with SPF mice, while increases in BDNF and decreases in 5-HT were displayed. Bercik et al. (2011) exposed SPF mice to antimicrobials (ATMs) for 7 days; conversely, they colonized GF mice with microbiota. Increased BDNF and exploratory behavior (anxiety) were seen with the administration of ATMs. Once ATMs were withdrawn, changes in behavior reversed. However, in GF mice ATMs did not alter behavior because there was no microbiota to alter. Gareau et al. (2011) examined the link between enteric infection and impaired learning & memory, by inoculating SPF and GF mice with C.rodentium

followed by a probiotic. *C.rodentium* colonization induced memory dysfunction in SPF mice, but GF mice were unaffected, providing support for the requirement of commensal gut microbiota in memory (Lee & Chua, 2011), while probiotic dispensation prevented memory dysfunction.

Diet. Nutritional habits are so imperative that diet during pregnancy appears to influence the diversity of initial colonization of microbes (Collado et al., 2012). Studies were also conducted to determine whether dietary manipulation affected bacterial diversity, and consequently, memory and learning. Li et al. (2009) randomly assigned 5 week old mice to receive standard diet or chow infused with 50% lean ground beef (BD) for 3 months, and found that the BD diet group had significantly higher bacterial diversity and displayed improved memory with reduced anxiety in comparison to its counterpart. Ohland et al. (2013) took it a step further by investigating whether the modulatory effects of probiotics were altered by diet. In this study wild and IL-10 deficient mice were fed either a chow diet or a western style diet infused with or without *L.helvticus* and discovered that effects were diet and genotype dependent. Overall psychological effects were alleviated; however, a combination of probiotic and western diet exacerbated effects, demonstrating that diet does factor into probiotic induced effect.

Dysbiosis in humans. Several studies involving humans have been conducted demonstrating microbiota and its effects on behavior; pregnancy & infancy, and implication in various other disease states.

Behavior. Intestinal dysbiosis contributes to psychiatric disorders in patients with bowel disorders (Bercik et al., 2011). In a 12 year longitudinal, prospective, randomized, population based study, Koloski et al. (2012) surveyed 1775 Australian participants in 1997 on functional gastrointestinal disorders (FGIDs). The participants were contacted 12 years later and completed

a follow-up survey in hopes of determining the directionality of the BGA in FGIDs. The study found that "among people free of a FGID at baseline, higher levels of anxiety but not depression at baseline was a significant independent predictor of developing new onset FGIDs 12 years later. Among people who did not have elevated levels of anxiety and depression at baseline, those with a FGID at baseline had significantly higher levels of anxiety and depression at followup" (Koloski et al., 2012). In other words, the existence of FGID's begets anxiety, and anxiety begets FGIDs, thus confirming the bi-directionality of BGA.

In 2008, Maes et al. sought to determine whether major depressive disorder (MDD) is accompanied by increased serum levels of IgM and IgA directed again LPS of gram negative enterobacteria. Fifty-one MDD patients completed a FibroFatigue Scale and chronic fatigue syndrome (CFS) scale to determine their severity from which a correlation with IgM and IgA against LPS was measured against. Increased levels were accompanied by increased gut permeability as the immune response system (IRS) was initiated against the LPS of enterobacteria. Similarly, Rao et al. (2009) randomized 39 CFS patients between 18-65 years of age to complete a two month study in which anxiety and depression were assessed using the Beck Depression Inventory (BDI) and Beck Anxiety Inventory (BAI). They took an eight week course of either probiotics (L.casei & Shirota) or placebos. Stool samples were collected and analyzed before and after, with a reassessment using the BDI and BAI. The treatment group displayed moderate increases in fecal microbiota with significant increases in *Bifidobacterium* and Lactobacillus strains. Consequently, BDI and BAI were also improved in the treatment group. A double-blind, placebo controlled, randomized paralleled group study of healthy human volunteers by Messaoudi et al. (2011) sought to determine the anxiolytic effect of probiotics on anxiety, depression, stress, and coping. They were given a combination of L.helveticus and

B.longum for 30 days and then analyzed using behavior scales, as well as 24 hour urine analysis. In combination with the behavior scales, a reduction in cortisol was observed displaying the anticipated anxiolytic effect. In single centered, randomized, controlled, parallel-arm design study by Tillisch et al. (2013), 36 healthy women ranging in ages 18-55 years old were either given a fermented milk product with probiotic (FMPP), a non-fermented control milk product, or no intervention twice daily for 4 weeks in order to determine whether a FMPP could alter intrinsic connectivity and responses to emotional attention tasks. After undergoing subsequent before and after MRIs, it was confirmed that FMPP ingestion evoked brain responses and resting state networks in women tested, "involving activity reductions in brain regions belonging to a sensory brain network, as well as frontal, prefrontal, and temporal cortices, parahippocampal gyrus, and the PAG" (Tillisch et al., 2013).

Other disease states and disorders. The effects of dysbiosis can have far reaching effects on human health as results of other studies have indicated. For instance, Tan et al. (2011) examined 52 severely affected traumatic brain injury patients in a randomized single blind study to determine whether enteric administration of probiotics would affect Th1 & Th2 (helper T cells) imbalance and improve clinical outcomes. After a 21 day course of probiotics via NG tube, the treatment group displayed lower incidence of nosocomial infections and shorter ICU stays.

Qin et al. (2008) assessed and characterized the microbiota in type 2 diabetics in large two-staged metagenome-wide association study involving 345 Chinese volunteers. After a deep shotgun sequencing of the gut microbial DNA, 60,000 type 2 diabetic associated markers were identified and validated establishing a metagenomic linkage that type 2 diabetics had a moderate degree of gut dysbiosis, and an increase in pathogenic bacteria. Colonization increases glucose uptake in the gut implicating enteric microbiota as modulators of fat deposition in the host; diversity will determine regulation of energy storage and may predispose to obesity (O, Hara & Shanahan, 2007).

With an increased prevalence of autism spectrum disorders (ASD), studies examining causal relationship between microbiota and ASD have increased as well. Adams et al. (2011) surveyed 58 ASD children compared to 39 typical children to assess their GI and ASD severity and then examined fecal samples for associated flora and biomarkers. GI symptoms were strongly correlated with ASD children and increased severity of the disorder. Similarly, Kang et al. (2013) compared gut microbiomes of 20 GI symptom-free neurotypical children to 20 ASD children mostly presenting with GI symptoms. Abnormal breakdown of carbohydrates appeared to affect the amount and type of nutrients absorbed resulting in ill digestive bacteria contributing to poor digestion, intestinal inflammation and more severe ASD. The ratio of glutamate to GABA was higher resulting in the display of hyper-excitation. In a study by Theije et al. (2011), the increased presence of T cells in biopsies of three ASD children indicates increased inflammation, and thus altered immunity. The biopsies also revealed that the colonization of *Clostridium* species was at the expense of *Bifidobacterium*. He hypothesized that gut inflammation genetically predisposes one prone to express the autistic phenotype or increase the severity of disease state. Exposures to high levels of IL-6 in utero alter brain development and leads to permanent behavioral impairments (Collado et al., 2012), that if microbiota corrections cannot be made within the very narrow and critical window behavioral phenotype cannot be reversed and the opportunity to achieve normal brain development is lost (Diamond et al., 2011).

Pregnancy and infancy. Microbiota development is dependent on first inoculums, mother's microbiota, mode of delivery, type of feeding, environment, weaning and food practices and the use of antibiotics (Collado et al., 2012). A prospective, randomized mother-

infant study of 91 pregnant women and their infants by Koren et al. (2012) sought to determine how pregnancy affects the gut microbiome via stool samples and data collections concerning diet in the first and third trimesters. They concluded that pregnancy was associated with a profound alteration of microbiota, with the third trimester mimicking composition found in the metabolic syndrome-dysbiosis, inflammation and weight gain. These metabolic changes are necessary, however, to support a healthy pregnancy as hyperglycemia provides a continuous supply of nutrients and adiposity prepares the body for the energetic demands of lactation. Interestingly, a child's microbiota is most similar to their mother's in the first trimester. Microbiota tends to revert back to this status once infection subsides or antimicrobial is withdrawn (Dinan et al., 2012). In a study conducted by Azad et al. (2013), records were obtained regarding the cohort of 24 Canadian infants investigating the mode of delivery, infant diet, and medication. Fecal samples of infants were obtained and DNA sequenced in order to determine species colonization. Azad et al. (2013) found that compared with breastfed and vaginally delivered infants, formula fed and cesarean born infants had increased presence of *C.difficile* and decreased presence of beneficial microbiota. In fact, breastfeeding is the single most important postnatal element in immunological programming according to Collado et al. (2012), because breast milk is a source of oligosaccharides, which exert a prebiotic effect (Matamoros et al., 2013). Fortner et al. (2014) examined the association of fetal membrane chorion thinning, and bacterial presence in 14 Preterm Premature Rupture of Membranes (PPROM) subjects as compared to term subjects, using membrane samples. Results confirmed that dysbiosis can have adverse affects on term pregnancy, demonstrating that bacterial count is greatest and inversely correlated with chorion thinning among PPROM subjects.

14

Chapter 3: DISCUSSION

Summary of Evidence

Many aspects of the brain to gut signaling that are addressed in this literature review, in particular the role of this signaling in emotional and cognitive function, remain speculative at this point but may guide future research. Preclinical rodent studies demonstrate strong correlations in the mapping of neuroanatomy of the ENS, but they are insufficient in providing information for human studies. In fact there are more questions that remain to be addressed. For instance, "What role does gut to brain signaling have in brain development during early life and what part does it play in adults? Does mucosally driven vagal input to the brain play a part in brain development?" (Mayer, 2011). While larger randomized, double blind trials implementing gut microbiota before and after intervention are necessary to show clinical outcomes in regards to disease states (Vrieze et al., 2013), most of these hypotheses can be studied in human patients, using stool sample for metagenomic sequencing of the microflora and gut tissue. Analysis of signaling mechanisms can be obtained easily and noninvasively using endoscopic biopsies to study brain structure, function, and signaling with non-invasive neuroimaging.

After performing the literature review, it became apparent that developing an intervention to impose upon care providers seemed futile as such an intervention would require comprehensive thought in regards to the numerous factors that might predispose one to dysbiosis. Primary prevention by way of education, holds, not only the practitioner accountable, but as the HBM suggests, the patient as well, as they are the ultimate determinants of their health. This also places the investigation of probiotic treatment in all modes of preventionprimary, secondary, and tertiary.

Limitations

The most glaring limitation regarding this literature review is the abundance of preclinical studies using rodents rather than human experimentation. Although rodents are often used in preclinical trials, it is not comparable to human trials simply because anatomy and pathophysiology is not the same. Secondly, for the available studies using human subjects the sample sizes were small and lackluster at best, as it is difficult to substantiate clinical significance with a small sample size. Interest in the BGA and its correlation to the increased prevalence of autoimmune diseases and other disorders will expectantly increase the number of randomized, double blind clinical trials being performed.

The HIP is actively working on identifying the remaining undetermined 25% of phyla within the gut. Once the HIP completes the sequencing, it will better serve the experimentation process as the selection of suitable bacterial strains with specific properties tailored to patient needs is necessary to achieve therapeutic benefits of probiotics (Caepa et al., 2013), such as medication synthesis is to Cytochrome P_{450} . Therefore, there will be an incomplete retrieval of identified research because of the unknown until sequencing is complete.

As demonstrated, microbiota colonization is multifactorial beginning at conception and continuing to be altered throughout the lifespan in response to lifestyle changes. For instance, Ohland et al. (2013) determined that probiotic effectiveness was dependent upon the synergistic effect of diet and mouse phenotype. Therefore, it is difficult to demonstrate the specific underpinnings of probiotic effectiveness, as it is difficult to isolate the probiotic effect only in experimentation.

Chapter 4: CONCLUSIONS

Great progress has been made in the understanding of the bidirectional communication between the brain and digestive system, including the mapping of ENS and how it is modulated. There are 200-600 million neurons in the ENS; and as it interfaces with the largest body surface (Mayer, 2011), the intestinal surface, it creates a barrier to entry by directly killing pathogen, bad bacteria, viruses, fungi, parasites, and yeast via its intact bacterial lining.

Maternal exposure during pregnancy may induce long lasting or permanent changes in fetal physiology, and thereby impact disease risk later in life (Collado et al., 2012). Fetuses are born germ free but after birth, establishment of microbiota is determined by environmental factors such as mode of delivery, type of infant diet, hygiene levels, and medication (O'Hara & Shanahan., 2007).

Dysregulation of the BGA plays a central role in the pathogenesis of many disease states. As intestinal permeability increases, alteration of GI motility leads to profound mast cell activation resulting in release of proinflammatory mediators. Probiotics can attenuate the immune response. They are associated with reduction of risk in GI infections and lower frequency of colic (Theije et al., 2011). A study in China revealed that in children 3-5 years old treated with a probiotic combination 53% had lower rates of fever, 41% had reduced coughs, and 28% had decreased runny noses. It also demonstrated a decreased need for antibiotic treatment as usage declined by 84% (Barron, 2013). There are many possibilities for fecal transplantation as it was shown to improve MS symptoms (no encopresis, or neurological disability) anywhere from 2-15 years post treatment (Vrieze et al., 2013). Fecal transplantation also was found to increase

16

colonization and insulin sensitivity, and therefore decrease insulin resistance in male subjects with metabolic syndrome (Vrieze et al., 2012).

As the metagenomic sequencing of the microbiome reaches completion, discoveries are being made that will provide more crucial information. In a recent study for instance, dendritic cells were found to bind with the flagella fragments of bacteria in the gut, mobilizing other immune cells to fight rotavirus infection supporting the case for more stringent use of antimicrobials that can create dysbiosis (Leslie, 2014). Further examination of these pathways in human trials will solidify our understanding of microbiota gut-brain interactions, and the modulation of the gut flora can provide novel targets for people with various diseases associated with gut dysbiosis (Tillisch et al., 2013).

References

- Adams, J., Johansen, L., Powell, L., Quig, D., & Rubin, R. (2011). Gastrointestinal flora and gastrointestinal status in children with autism-comparisons to typical children and correlation with autism severity. *Gastroenterology*, *11*(22), 1-13.
- Ait-Belgnaoui, A., Durand, H. Cartier, C., Chaumaz, G., Eutamene, H., Ferrier, L., Houdeau, E., Fioramonti, J., Bueno, L., & Theodorou, V. (2012). Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. *Psychoneuroendocrinology*, *37*, 1885-1895.
- Azad, M., Konya, T., Maughan, H., Guttman, D., Field, C., Chari, R., Sears, M., Becker, A., Scott, J., & Kozyrskyj, A. (2013). CMAJ, 185(5), 385-394.
- Barron, J. August 10, 2013 The Baseline of Health Foundation. The Benefits of probiotics- more than ever. Retrieved from http://jonbarron.org/natural-health/benefits-of-probioticsimmune-

system?utm_source=iContact&utm_medium=email&utm_campaign=Jon%2520Barron& utm_content=Biweekly+Newsletter+8%252F12%252F13#footnote11_jpth0qf

Bercik, P., Denou, E., Collins, J., Jackson, W., Lu, J., Jury, J., Deng, Y., Blennerhassett, J., Macri, J., McCoy, K., Verdu, E., & Collins, S. (2011). The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. *Gastroenterology* 141(2), 599-609.

- Blaser M. (2003, April). [Review of the book Probiotics and prebiotics: where are we going? by Gerald Tannock]. Emerg Infect Dis [serial online] Retrieved from: <u>http://wwwnc.cdc.gov/eid/article/9/5/03-0134</u>
- Bravo, J., Forsythe, P., Chew, M., Escaravage, E., Savignac, H., Dinan, T., Bienenstock, J., Cryan, J. (2011). Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. *PNAS*, 108(38), 16050-16055.
- Caepa, C., Worpereis, H., Rezaiki, L., Kleerebezem, M., Knol, J., & Oozeer, R. (2013).
 Influence of fermented milk products, prebiotics and probiotics on microbiota composition and health. *Best Practice & Research Clinical Gastroenterology* 27, 139–155.
- Collado, M., Cernada, M., Baüerl, C., Vento, M., & Pérez-Martínez G. (2012). Microbial ecology and host-microbiota interactions during early life stages. *Gut Microbes*, 3(4): 352–365.
- Cryan, J., & O'Mahoney, S. (2011). The microbiome-gut-brain axis: from bowel to behavior. *Neurogastroenterology & Motility*, 23, 187-192.
- Desbonnet, L., Garrett, L., Clarke, G., Kiely, B., Cryan, J.F., & Dinan, T. G. (2010). Effects of the probiotic Bifidobacterium Infantis in the maternal separation model of depression. *Neuroscience*, 170, 1179-1188.
- Diamond, B., Huerta, P., Tracey, K., & Volpe, B. (2011). It takes guts to grow a brain. *Bioessays, 33*, 588-591.

- Dinan, T., & Cryan, J. (2012). Regulation of the stress presonse by the gut microbiota:Implications for psychoneuroendocrinology. *Psychoneuroendocrinology*, *37*, 1369-1378.
- Fortner, K., Grotegut, C., Ransom, C., Bentley, R., Feng, L., Lan, L., Heine, R., Seed, P., & Murtha, A. (2014). Bacteria Localization and Chorion Thinning among Preterm
 Premature Rupture of Membranes. *PLoS ONE 9*(1): e83338.
 doi:10.1371/journal.pone.0083338
- Gareau, M., Wine, E., Rodrigues, D., Cho, J., Whary, M., Philpott, D., MacQueen, G., & Sherman, P. (2011). Bacterial infection causes stress-induced memory dysfunction in mice. *Gut 60*, 307-317.
- Glanz, K., Rimer, B., & Viswanath, K. (2008). *Health behavior and health education: Theory, research, and practice.* (4th ed.). San Fransisco, CA: Josey-Bass
- Kang, D., Gyoon, J., Ilhan, Z., Wallstrom, G., LaBaer, J., Adams, J., & Krajmalnik-Brown, R.
 (2013). Reduced Incidence of Prevotella and Other Fermenters in Intestinal Microflora of Autistic Children. *PLoS ONE* 8(7): e68322. doi:10.1371/journal.pone.0068322
- Koloski, N., Jones, M., Kalantar, J., Weltman, M., Zaguirre, J., Talley, N. (2012). The Brain-Gut Pathway in Functional Gastrointestinal Disorders Is Bidirectional, *Gut*, *61*(9), 1284-1290.
- Konturek, P., Brzozowski, T., & Konturek, S. (2011). Stress and the gut: Pathophysiology, clinical consequences, diagnostic approach and treatment options. *Journal of Physiology*, 62(6), 591-599.
- Koren, O., Goodrich, J., Cullender, T., Spor, A., Laitinen, K., Backhed, H., Gonzalez, A., Werner, J., Angenet, L., Knight, R., Backhed, F, Isolauri, E., Salminen, S., & Ley, R.

(2012). Host remodeling of the gut microbiome and metabolic changes during pregnancy. *Cell*, *150*, 470-480.

- Lee, Y., & Chua, A., (2011). Influence of Gut Microbes on the Brain-Gut Axis. Journal of Neurogastroenterology and *Motility*, 17(4), 427-429.
- Leslie, M. (2014). Cells can fight viruses, even when stimulated to combat bacteria. *Science Magazine*. Retrieved from: http://news.sciencemag.org/biology/2014/11/cells-can-fight-viruses-even-when-stimulated-combat-bacteria
- Li, W., Dowd, S., Scurlock, B., Acosta-Martinez, V., & Lyte, M. (2009). Memory and learning behavior in mice is temporally associated with diet-induced alterations in gut bacteria. *Physiology & Behavior*, 96, 557-567.
- Maes, M., Kubera, M., & Leunis, J. (2008). The gut-brain barrier in major depression: Intestinal mucosal dysfunction with n increased translocation of LPS from gram negative enterobacteria (leaky gut) plays a role in the inflammatory pathophysiology of depression. *Neuroendocrinology*, 29(1), 117-124.
- Matamoros, S., Gras-Leguen, C., Le Vacon, F., Potel, G., & de La Cochetiere, M. (2013).
 Development of intestinal microbiota in infants and its impact on health. *Trends in Microbiology*, 21(4), 16-173.
- Mayer, E. (2011). Gut feelings: the emerging biology of gut-brain communication. *Nat Rev Neuroscience*, *12*(8), 1-30.

- Messaoudi, M., Lalonde, R., Violle, N., Javelot, H., Desor, D., Nejdi, A., Bisson, J., Rougeot,
 C., Pichelin, M., Cazaubie, IM., & Cazaubiel, J. (2011). *The British Journal of Nutrition*, 105(5), 755-64.
- Neufeld, K., Kang, N., Bienenstock, J., & Foster, J. (2011). Reduced anxiety-like behavior and central neurochemmical change in germ-free mice. *Neurogastroenterology & Motility*, 23, 255-e119.
- O'Hara, A., & Shanahan, F. (2007). Gut Microbiota: Mining for Therapeutic Potential. *Clinical Gastroenterology and Hepatology*, *5*, 274-284.
- Ohland, C., Kish, L., Bell, H., Thiesen, A., Hotte N., Pankiv, E., & Madsen, K. (2013). Effects of Lactobacillus helveticus on murine behavior are dependent on diet and genotype and correlate with alterations in the gut microbiome. *Psychoneuroendocrinology*, 38, 1738-1747.
- Qin, J., Yingrui, L., Cai, Z., Li, S., Zhu, J., Zhang, F., Liang, S., Zhang, W., Guan, Y., Shen,
 D., Peng, Y., Zhang, D., Jie, Z., Wu, W., Qin, Y., Xue, W., Li, J., Han, L., Lu, D., Wu,
 P., Dai, Y., Sun, X., Li, Z., Tang, A., Zhong, S., Li, X., Chen, W., Xu, R., Wang, M.,
 Feng, Q., Gong, M., Yu, J., Zhang, Y., Zhang, M., Hansen, T., Sanchez, G., Raes, J.,
 Falony, G., Okuda, S., Almeida, M., LeChatelier, E., Renault, P., Pons, N., Batto, J.,
 Zhang, Z., Chen, H., Yang, R., Zheng, W., Li, S., Yang, H., Wang, J., Ehrlich, S.,
 Nielsen, R., Pedersen, O., Kristiansen, K., & Wang, J. A metagenome-wide association
 study of gut microbiota in type 2 diabetes. *Nature 490*, 55-60.
- Quigley, E. (2008). Probiotics in functional gastrointestinal disorders: What are the facts?: Current Opinion in Pharmacology, 8, 704-708.

- Rao, V., Bested, A., Beaulne, T., Katzman, M., Iorio, C., Berardi, J., & Logan, A. (2009). A randomized, double-blind, placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome. *Gut Pathogens*, 1-6.
- Tan, M., Zhu, J., Du, J., Zhang, L., & Yin, H., (2011). Effects of probiotics on serum levels of Th1/Th2 cytokine and clinical outcomes in severe traumatic brain-injured patients: a prospective randomized pilot study. *Critical Care*, 15, 1-10.
- Theije, C.,, Wu, J., da Silva, S., Kamphius, P., Garssen, J., Korte, S., & Kraneveld, A. (2011).
 Pathways underlying the gut-to-brain connection in autism spectrum disorders as future targets for disease management. *European Jouranl of Pharmacology*, 668, S70-S80.
- Tillisch, K., Labus, J., Kilpatrick, L., Jiang, Z., Stains, J., Ebrate, B., Guyonnet, D., Legrain-Raspaud, S., Trotin, B., Naliboff, B., & Mayer, E., (2013). Consumption of fermented milk product with probiotic modulates brain activity. *Gastroenterology*, 144, 1394-1401.
- Vrieze, A., de Groot, P., Kootte, R., Knaapen, M., van Nood, E., Nieuwdorp, M. (2013). Fecal transplant: A safe and sustainable clinical therapy for restoring intestinal microbial balance in human disease? *Best Practice & Research Clinical Gastroenterology* 27, 127– 137.
- Vrieze, A., Van Hood, E., Holleman, F., Salojarvi, J., Kootte, R.S., Bartelsman, J., Dallinga-Thie, G., Ackermans, M., Serlie, M., Oozeer, R., Derrien, M., Druesne, A., Van Hylckama Vlieg, J., Bloks, V., Goren, A., Heilig, H., Zoetendal, E., Stroes, E., DeVos, W., Hoekstra, J., & Nieuwdorp, M. (2012). Transer of intestinal microbiota from leand donors increases insulin sensitivity in individuals with metabolic syndrome. *Gastroenterology*, *143*, 913-916.

Appendices

#1 Matrix for Research Articles

Reference	Research Focus	Population	Variables & Measures	Findings
Adams, J., Johansen, L., Powell, L., Quig, D., & Rubin, R. (2011). Gastrointestinal flora and gastrointestinal status in children with autism- comparisons to typical children and correlation with autism severity. <i>Gastroenterology</i> , <i>11</i> (22), 1-13.	Gut flora (beneficial and pathogenic) and GI biomarkers investigated in ASD children compared to typical children	58 ASD children (2- 18y/o) compared to 39 typical children who have not used antibiotics within last month.	Measures Survey completed to assess GI status and severity as well as ASD severity. Single Stool sample assessed for bacterial and yeast cultures, lysosome, lactoferrin, secretory IgA, elastase, digestion markers, short chain fatty acids, pH, and blood presence.	GI symptoms strongly correlated with ASD children and increase with severity. Also had lower level of short chain fatty acids
Ait-Belgnaoui, A., Durand, H. Cartier, C., Chaumaz, G., Eutamene, H., Ferrier, L., Houdeau, E., Fioramonti, J., Bueno, L., & Theodorou, V. (2012). Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. <i>Psychoneuroendocrinology</i> , <i>37</i> , 1885-1895.	Does Lactobacillus Farciminis affect the HPA axis stress response, reverse changes in lipopolysaccharide translocation and central cytokine release, and prevent the "leaky" gut and LPS upload in the mucosa?	Female Wistar rats exposed to PRS model or sham-PRS model after receiving 1 of 3 experiments.	 #1 Given L. farcimis for 2 weeks. Cytokines (IL-1B, IL-6, and TNF-a) levels measured. LPS concentration in portal vein measured. #2 treated with myosin light chain kinase(MLCK) inhibitor, ML-7. Then, LPS 	L.farciminis and ML-7 enhances the epithelial barrier avoiding LPS upload decreasing intestinal permeability > blocked the stress- induced hyperpermeability, endotoxemia and attenuated HPA axis stress response and central neuroinflammation.

			concentration, IL- 1B, IL-6, & TNF-a hypothalamic expression determined. #3 treated with antibiotics to reduce LPS concentration. Corticosterone, cytokines, endotoxemia and hypothalamic pro- inflammatory cytokines mRNA expression measured.	Antibiotic reduction of LPS concentration prevented HPA axis stress response and increased pro- inflammatory cytokines.
Azad, M., Konya, T., Maughan, H., Guttman, D., Field, C., Chari, R., Sears, M., Becker, A., Scott, J., & Kozyrskyj, A. (2013). <i>CMAJ</i> , <i>185(5)</i> , 385-394.	Characterize the gut microbiota of healthy Canadian infants and describe the influence of cesarean delivery and formula feeding.	Subset of 24 term infants from the Canadian Healthy Infant Longitudinal Development (CHILD) birth cohort.	Mode of delivery was obtained from medical records, and mothers were asked to report on infant diet and medication use. Fecal samples were collected at 4 months of age, and we characterized the microbiota composition using high-throughput DNA sequencing.	Compared with breastfed infants, formula-fed infants had increased richness of species, with overrepresentation of <i>C.difficile</i> , <i>E.Shigella</i> and <i>Bacteroid</i> <i>es</i> species were underrepresented in infants born by cesarean delivery. Infants born by elective cesarean delivery had particularly low bacterial richness and diversity.
Barron, J. August 10, 2013 The Baseline of Health Foundation.	Gut bacteria responsible for 60-	Immunomodulators produce lactoferrin	Study in China revealed that in	

The Benefits of probiotics- more than ever. http://jonbarron.org/natural- health/benefits-of-probiotics- immune- system?utm_source=iContact& utm_medium=email&utm_cam paign=Jon%2520Barron&utm_ content=Biweekly+Newsletter +8%252F12%252F13#footnote 11_jpth0qf	70% of immune system function. Bacteria line every inch of intestinal tract creating a barrier to entry by directly killing pathogens, bad bacteria, viruses, fungi, parasites, and yeast.	which directly immune function and B vitamin production. 70% to as much as 90% of immune system in colon in lymphoid tissue below surface of epithelial cells.	children 3-5 years old treated with 2 probiotics 53% had lower rates of fever, 41% had reduced coughs, 28% has decreased runny nose, and antibiotic usage decreased by 84%.	
Bercik, P., Denou, E., Collins, J., Jackson, W., Lu, J., Jury, J., Deng, Y., Blennerhassett, J., Macri, J., McCoy, K., Verdu, E., & Collins, S. (2011). The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. <i>Gastroenterology</i> 141(2), 599-609.	Examine whether the intestinal microbiota affects behavior and brain biochemistry in mice	Specific pathogen free(SPF) Germ free BALB/c mice given antimicrobials(ATMs)	SPF mice given antimicrobials x7days. Germ-free BALB/c and NIH Swiss mice colonized with microbiota. Behavior evaluated after exposed to step down test and light/dark test. Gut samples analyzed for levels of serotonin, noradrenaline, dopamine, and BDNF	1. Alteration of microbiota increased hippocampal BDNF and exploratory behavior. 2. Changes were reversible upon normalization of microbiota after withdrawal of ATMs. 3. ATM admin did not alter behavior in germ free mice. Intestinal microbiota influences brain chemistry and behavior independently of the autonomic nervous system, GI specific neurotransmitters, or inflammation. Intestinal dysbiosis might contribute to psychiatric disorders in patients with

				bowel disorders.
Bravo, J., Forsythe, P., Chew,	Show that chronic	36 Adult male	Exposed to open	Neurochemical and
M., Escaravage, E., Savignac,	treatment with L.	BALB/c mice given	field test, stress	behavioral effects not
H., Dinan, T., Bienenstock, J.,	rhamnosus induces	Lactobacillus.	induced hypothermia	found in vagotomized
Cryan, J. (2011). Ingestion of	region dependent		(SIH), elevated plus	mice. L.rhamnosus has
Lactobacillus strain regulates	alterations in		maze (EPM), fear	direct effect on
emotional behavior and central	GABA mRNA in		conditioning, and	behavioral and
GABA receptor expression in	the brain with		forced swim test	physiological responses
a mouse via the vagus nerve.	increases in		(FST). Plasma	in a manner dependent of
PNAS, 108(38), 16050-16055.	cortical regions		corticosterone	vagus nerve. Identifying
	and concomitant		concentration	the vagus as a major
	reductions in		measured.	modulatory
	expression in the			communication pathway
	hippocampus,			between the bacteria in
	amygdale, and			the gut and the brain.
	locus coeruleus in			L.rhamnosus fed mice
	comparison with			also showed improved
	control fed mice.			memory, reduced
				corticosterone levels.
				Bacteria is bidirectional
				in communication of the
				gut-brain axis.
Caepa, C., Worpereis, H.,	Describe the	Elie Metchnikoff-	Most important	
Rezaiki, L., Kleerebezem, M.,	molecular	founding father of	characteristic of	
Knol, J., & Oozeer, R. (2013).	mechanisms	probiotics concept.	probiotic are	
Influence of fermented milk	involved in the	Studied Bulgarian pop	survival during	
products, prebiotics and	crosstalk between	and usage of	passage thru	
probiotics on microbiota	gut bacteria and	fermented milk as	stomach and	
composition and	the human host	attribute for longevity.	intestine.	
health. <i>Best Practice</i> &	and review the	Tissier discovered	Selection of suitable	
Research Clinical	impact of different	Bifidobacteria in	bacterial strains with	
Gastroenterology 27, 139–155.	nutritional	human milk and	specific properties	
	concepts such as	administered it to	and use of schemes	

			for all fforment most in a	
	pre-, pro-, and	infants with diarrhea	for different patient	
	symbiotics on the	in the 1950s.	groups.	
	GI ecosystem and			
	their potential			
	health benefits.			
	Each person	Delivery mode will	Gestational age	Gut microbes that
Collado, M., Cernada, M.,	houses 160 species	affect early stage of	affects gut	interact with fetus before
Baüerl, C., Vento, M., &	from 1000 to 1150	neonatal microbial	microbiota.	birth modulate brain
Pérez-Martínez' G. (2012).	bacterial species	colonization. Csection	Premature infants	developmental pathways.
Microbial ecology and host-	whose collective	infants acquire those	whom are	Exposure to high levels
microbiota interactions during	genome aka	found on skin i.e.	hospitalized and	of IL-6 in utero alters
early life stages. Gut Microbes,	microbiome	Staph,	separated from their	brain development and
3(4): 352–365.	contains at least	Corynebacterium and	mothers are	leads to permanent
	100 times as many	Propionibacterium.	colonized by their	behavioral impairments.
	genes as the	Increased risk for	environment.	Preterm, formula fed,
	human genome.	atopic diseases such as	Obesity associated	csectioned, and those
	Microbiota	allergic rhinitis,	with markedly	who required antibiotics
	development of the	asthma, and celiac	reduced bacterial	and or intensive care are
	infant is rapid and	disease. Vaginally	diversity, depletion	prone to develop diseases
	depends on first	delivered resemble	of Bacteroidetes, and	including infections such
	inoculums,	mothers vagina i.e.	higher propoertion	as diarrhea, necrotizing
	mother's	Lactobacillus,	of Actinobacteria	enterocolitis, atopic
	microbiota, mode	Prevotella, Sneathia.	compared to lean	eczema and other allergic
	of delivery, type of	Breastfed infants	subjects.	diseases.
	feeding and the	supplied constant	High numbers of	Infant faecal microbial
	environment,	supply of staph, strep,	Bifidobacterium	composition is related to
	including weaning	lactic acid bacteria, &	have positive	maternal weight and
	food practices and	bifidobacteria. Single	correlation with	weight gain over
	the use of	most important	normalization of	pregnancy. Thus higher
	antibiotics.	postnatal element	inflammatory status	infant weight correlates
	Colonization found	metabolic and	and improved	with lower numbers of
	in umbilical cord,	inmmunological	glucose tolerance	bifidobacteria.
	placenta, amniotic	programming of the	and glucose induced	
	r-active, unintend	r	Bracesse maaceda	

	fluid and meconium. Early dietary and gut microbiological environments more profound effect on metabolic	child's health. Antimicrobials are not selective for pathogens and indiscriminately affect all members of the commensal gut,esp	insulin secretion. Atopic disease related to lower microbe exposure in early life. Fetal programming hypothesis states	
	programming of a child. Nutritional habits in pregnancy appear to influence the type of microbes found in meconium- organic or biodynamic diet	decreasing the levels of anaerobic bacteria such as Bacteroides, E.coli and beneficial bifidobacteria and increasing levels of harmful Klebsiella and clostridia.	maternal exposures during pregnancy may induce long lasting or permanent changes in fetal physiology and thereby impact disease risk later in life.	
	have lower numbers of E.coli. Does a decrease in	Brain derived		Specific modulation of
Cryan, J., & O'Mahoney, S. (2011). The microbiome-gut- brain axis: from bowel to behavior. <i>Neurogastroenterology &</i> <i>Motility, 23</i> , 187-192.	desirable gastrointestinal bacteria lead to a deterioration in gastrointestinal, neuroendocrine, or immune relationships and disease. Germ free mice are utilized to study the BGA because they are devoid of	neurotropic factor (BDNF) crucial for supporting neuronal survival and encouraging the growth and differentiation of new neurons and synapses- regulate aspects of cognitive and emotional behaviors. The modulation of systemic		the enteric microbiota may be useful strategy for stress-related disorders and for modulating the co- morbid aspects of gastrointestinal disorders such as IBS and IBD.

				1
	bacteria, so the	inflammatory		
	impact of complete	cytokines and		
	absence of GI	oxidative stress could		
	microbiota on	potentially lead to		
	behavior is	increased BDNF,		
	examined. Animal	involved in anxiety		
	studies are not	and depression.		
	translational to	Lactobacillus reuteri (
	human disease but	known to modulate		
	still incite data	the immune system)		
	regarding enteric	decreases anxiety. It		
	microbiota altering	alters the mRNA		
	behavior.	expression of		
		GABAA and GABAB		
		receptors in the central		
		nervous system		
		suggesting that		
		parasympathetic		
		innervations is		
		necessary.		
Desbonnet, L., Garrett, L.,	Explore the	Rats given either	exposed to Forced	Probiotic administration
Clarke, G., Kiely, B., Cryan,	potential	Bifidobacteria or	Swim Test (most	resulted in normalization
J.F., & Dinan, T. G. (2010).	antidepressant	citalopram	widely used model	of immune response,
Effects of the probiotic	properties of	enuioprum	for predicting	reversal of behavioral
Bifidobacterium Infantis in the	Bifidobacterium		antidepressant	deficit, and restoration of
maternal separation model of	infantis in the rat		activity in rodents	basal NA concentrations
depression. <i>Neuroscience</i> , 170,	MS model of		and increased	in the brainstem.
1179-1188.	depression by		immobility is	in the brainstein.
1177 1100.	comparing the		considered to reflect	
	effects probiotic		behavioral despair).	
	treatment with		Cytokine	
	citalopram, on the		concentrations,	
	adult behavioral		monoamine levels in	
	auun benaviorai		monoannie ieveis in	

	phenotype and key		the brain, and central	
	systems involved		and peripheral	
	in depression and		hypothalamic-	
	gut-brain		pituitary	
	communication		adrenal(HPA) axis	
			measures analyzed.	
Diamond, B., Huerta, P.,	1. Bacteria in the	4. Reversal is	6. The nervous	Immune system + central
Tracey, K., & Volpe, B.	gut changes	dependent upon the	system exerts	nervous system from a
(2011). It takes guts to grow a	rapidly after birth	stage of brain	significant influence	modulatory function to
brain. Bioessays, 33, 588-591.	and food	development. There is	over the immune	the synaptogenesis
•	consumption that	a critical	system through a	necessary for normal
	modulates brain	developmental	reflex control set	cognitive function. It's a
	pathways.	window which	point. A cholinergic	sensory organ that
	2. Also activate the	intestinal microbiota	anti-inflammatory	informs the brain about
	systemic	can reverse behavioral	pathway transduced	the status of infectious or
	immunity. Only	phenotype and	through the vagus	sterile immune activation
	limited production	achieve normal brain	nerve, and	throughout the body.
	of TH	development.	culminating in the	The activation of the
	17(responsible for	5. Although in	down regulation of	afferent pathway results
	controlling	infancy, rapidly	the monocytes in the	in synaptogenesis, thus
	extracellular and	expanding field	spleen etc. Through	determining the strength
	fungal infections)	focused on IDing and	this neural circuit the	of the immune response.
	results in the	mapping the	brain exerts a tonic	of the minute response.
	absence of	expression of immune	inhibitory influence	
	microbiota.	based molecules in	that prevents	
	3. With no	brain cells.	overexpression of	
	commensal	Established that	cytokines.	
	bacteria,	immune related	Cytokines.	
	production of IL-	signaling occurs not		
	10 is diminished;	0 0		
	,	only in glia which are		
	therefore,	r/t monocytes and		
	proinflammatory	macrophages, but also		
 	cytokines are	neurons and		

	uninhibited.	endothelial cells present in the brain vasculature.		
Dinan, T., & Cryan, J. (2012). Regulation of the stress presonse by the gut microbiota: Implications for psychoneuroendocrinology. <i>Psychoneuroendocrinology</i> , <i>37</i> , 1369-1378.	BGA- bidirectional communication networ4k enables signals from the brain to influence the motor, sensory, and secretory modalities of the GI tract and conversely, visceral messages from the gut can influence brain function, esp areas of brain devoted to stress regulation, esp hypothalamus. The vagus is an important line of communication between the gut and HPA. The ENS is a complex neuronal network with multiple neurotransmitters and neuromodulators	Germ free paradigm based on the fact that uterine environment is sterile during prenatal development and with surgical delivery replacing the normal vaginal delivery , the opportunity for postnatal colonization of the gut is eliminated once animals are maintained in sterile environment. Antibiotic approach- disrupt the microbiome with deliberate infection and administration of abx since they will perturb biodiversity and delay colonization. In germ free mice, a mild stress induces exaggerated release of corticosterone and ACTH compared to	Early life stress can also have long term effects on the microbiome. Rats exposed to maternal separation for 3h per day from post natal says 2-12 revealed an altered fecal microbiome when compared to non- separated control animals. Demonstrates a decrease in beneficial bifidobacterium and increase in pathogenic Clostridium in the cecum. (Bravo) study found that chronic treatment with Lactobacillus rhamnosus over 28 days produced animals with lower levels of	(Martin) 30 human subjects who were classified high and low anxiety traits. Blood and urine samples collected. Those with higher anxiety traits showed a distinct metabolic profile: different energy homeostasis; hormonal metabolism, and gut microbial activity. A dietary intervention reduced the urinary excretion of both cortisol and catecholamines and partially normalized stress related differences in energy metabolism and gut microbial activities. (Messaoudi) L.helveticus and B.longum given to healthy volunteers. Reduction in cortisol noticed. Possibly d/t decrease in proinflammatory cytokines, which activate the HPA or alternatively

such as 5HT, acetylchline, and CRF.the specific pathogen free SPF controls. The stress response in the behaviors in the behaviors in the microorganisms; reversed bycorticosterone and reduced depressive behaviors in the Brain can alter microbiome. Signals molecules released into gut lumen from cells in lamina propria that are under of thuman and contains 150x are many genes as and consists of greater than 1000 species and more than and more than threat (infection, disease, diet and toreverst to stable disease, diet and to rever to stable to rever to stable to rever to stable colonization mustthe specific pathogen reduced depressive behaviors in the behaviors in the such as 5-HT. Brain can alter microbiome. Signals molecules released into gut lumen from cells in lamina propria that are under the control of the consists of greaterbehaviors in the reversed by opioid and consists of greater the development of an and more than and more than antibiotics) has subsided, ant an anarrow window in to revert to stable colonization mustcorticosterone and reduced depressive behaviors in the sand also that there is infantis shown to in plasma tryptophan in plasma tryptophan and antigens to cross the diversitysubsided, microbiome tends to revert to stable diversityand antigens to cross the serving to ensurebevelsored serving to ensure serving to ensureby an alteration of neurotransmitter inputs serving to ensuresubsided, microbiome tends to revert to stable diversityand antigens to cross the serving to ensureby an alteration of neurotrice to stable serving to ensuresubsided, m
CRF.stress response in the The gut has 1014 microorganisms; which is 10x the number of human cells in our bodies and contains 150x as many genes as our genome.stress response in the GF mice is partially reversed by fecal matter from SPF mice and fully reversed by our genome.behaviors in the forced swim test. Lactobacillus strains (Rousseaux) could induce the expression of u- opioid and contains 150x as many genes as our genome.such as 5-HT. Brain can alter microbides mice and fully expression of u- opioid and consists of greater than 1000 species and more than threat (infection, disease, diet and antibiotics) has aubsided, microbiome tends to revert to stablestress response in the GF mice is partially reversed by opioid and cannabinoid cells and mimic the appropriate stress and also that there is subsided, an narrow window in early life where colonization mustbehaviors in the forced swim test. Lactobacillus strains (Rousseaux) could induce the expression of u- analesonid cells and mimic the altering microbiome.such as 5-HT. Brain can alter microbiome tends to revert to stableCORCONFecal matter from SPF microbial content of the gut is critical to the development of an antibiotics) has subsided, microbiome tends to revert to stablesuch as 5-HT.DestoredDestored and antiper to revert to stable to revert to stablesuch as 5-HT.DestoredDestored and antiper to revert to stableGF mice is partially reversed by the where colonization mustforced swim test. tartial to revert to stableDestoredDestored and a
The gut has 1014 microorganisms; which is 10x the number of human cells in our bodies and contains 150x as many genes as 0ur genome.GF mice is partially reversed by mice and fully reversed by mice and fully reversed byforced swim test. Lactobacillus strains (Rousseaux) could induce the expression of u- lamina propria that are under the control of the consists of greater than 1000 species and more than 7000 strains. Once threat (infection, disease, diet and antibiotics) has subsided, microbiome tends to revert to stableGF mice is partially reversed by opioid and connet the gut is critical to in promotingBrain can alter microbiome tends to revert to stableThe gut has 1014 microbiome tends to revert to stableGF mice is partially reversed by opioid and the gut is critical to the development of an an marrow window in microbiane marrow window in colonization mustBrain can alter microbiane match to reversed by opioid and the gut is critical to the development of an an anarrow window in in plasma tryptophan in plasma tryptophanBrain can alter microbiane tends the gut is critical to the gut life where in plasma tryptophanBrain can alter microbiane tends the gut is partially the were in plasma tryptophanBrain can alter microbiane tends the gut is partially the gut is critical must the gut is consisted in the colon are in plasma tryptophan the gut allowing bacteria and antigens to cross the
microorganisms; which is 10x the number of human cells in our bodies and contains 150x as many genes as our genome.reversed by mice and fully reversed byLactobacillus strains (Rousseaux) could induce the expression of u- opioid and cannabinoidmicrobiome. Signals molecules released into gut lumen from cells in lamina propria that are under the control of the CNS changes GI motility and secretion and permeability. Thus altering microbial content of the aut infection, disease, diet and antibiotics) has subsided, microbiome tends to revert to stablereversed by solution reversed by the development of an an narrow window in early life where colonization mustLactobacillus strains (Rousseaux) could induce the expression of u- opioid and cannabinoid cannabinoidmicrobiome. Signals molecules released into gut lumen from cells in lamina propria that are under the control of the CNS changes GI motility and secretion and permeability. Thus altering microbiome. Usually nonpathogenic bacteria in the colon are restrained by the infantis shown to induce an elevation in plasma tryptophan the gut allowing bacteria and antigens to cross the
which is 10x the number of human cells in our bodies and contains 150x as many genes as our genome.colonization with fecal matter from SPF mice and fully(Rousseaux) could induce the expression of u- opioid and cannabinoidmolecules released into gut lumen from cells in lamina propria that are under the control of the CNS changes GI motility and secretion and permeability. ThusConsists of greater than 1000 species and more than threat (infection, disease, diet and antibiotics) has subsided, microbiome tends to revert to stableInfantis. This study microbial content of the gut is critical to appropriate stress anal gesia.cells and mimic the altering microbiome. Usually nonpathogenic bacteria in the colon are response later in life an narrow window in microbiome tends to revert to stablemolecules released into gut lumen from cells in lamina propria that are under the control of the cannabinoidConsists of greater the gut is critical to the development of an antibiotics) has subsided, microbiome tends to revert to stablereceptors in microbiome tends an narrow window in an anarrow window in in plasma tryptophan in plasma tryptophan and antigens to cross the
number of human cells in our bodies and contains 150x as many genes as our genome.fecal matter from SPF induce the expression of u- opioid and cannabinoidgut lumen from cells in lamina propria that are under the control of the CNS changes GI motility and secretion and permeability. Thus altering microbial content of the gut is critical to the gut is critical to the development of an threat (infection, disease, diet and antibiotics) has subsided, microbiome tends to rever to stablefecal matter from SPF mice and fully teversed by teversed by intestinal epithelial intestinal epithelial in promoting analgesia.gut lumen from cells in lamina propria that are under the control of the CNS changes GI motility and secretion and permeability. Thus altering microbiome.1000 species and more than threat (infection, disease, diet and antibiotics) has subsided, microbiome tends to revert to stablefecal matter from SPF reversed by the development of an an anarrow window in early life where colonization mustinduce the expression of u- opioid and cannabinoid cells and mimic the altering microbiome.number of human threat (infection, disease, diet and antibiotics) has subsided, microbiome tends to revert to stablefecal matter from SPF the where colonization mustinduce the expression of u- opioid and cells and mimic the analgesia.gut lumen from cells in lamina propriat tare under the control of the consists of greater the development of an analgesia.finduce the expression of u- the development of an and also that there is and also that there is infantis shown to in plasma tryptophan
cells in our bodies and contains 150x as many genes as our genome.mice and fully
and contains 150x as many genes as our genome.reversed by Bifidobacteriumopioid and canabinoidunder the control of the CNS changes GI motility and secretion and permeability. ThusConsists of greater than 1000 species and more than 7000 strains. Once threat (infection, disease, diet and antibiotics) has subsided, microbiome tends to revert to stablereversed by Bifidobacterium infantis. This study demonstrates microbial content of the gut is critical to the development of an appropriate stress and also that there is and antizothal colonization mustunder the control of the CNS changes GI motility and secretion and permeability. Thus altering microbiome. Usually nonpathogenic bacteria in the colon are restrained by the infantis shown to in plasma tryptophan levels, a precursor to
as many genes as our genome.Bifidobacterium Infantis. This studycannabinoid receptors inCNS changes GI motility and secretion andConsists of greater than 1000 species and more thandemonstratesintestinal epithelial effects of morphinepermeability. Thus altering microbiome.7000 strains. Once threat (infection, disease, diet and antibiotics) has subsided, microbiome tends to revert to stableresponse later in life and also that there is early life where colonization must(Desbonnet) B. infantis shown to in plasma tryptophan levels, a precursor tointeget allowing bacteria and antigens to cross the
our genome. Consists of greater than 1000 species and more thanInfantis. This study demonstratesreceptors in intestinal epithelial cells and mimic the effects of morphineand secretion and permeability. Thus altering microbiome.7000 strains. Once threat (infection, disease, diet and antibiotics) has subsided, microbiome tends to revert to stableInfantis. This study demonstratesreceptors in intestinal epithelial cells and mimic the effects of morphine in promoting analgesia.and secretion and permeability. Thus altering microbiome.Usually nonpathogenic bacteria in the colon are in promoting and also that there is subsided, microbiome tends to revert to stableand also that there is early life where colonization mustinduce an elevation in plasma tryptophan levels, a precursor toand antigens to cross the
Consists of greater than 1000 species and more than 7000 strains. Once threat (infection, disease, diet and antibiotics) has subsided,demonstrates microbial content of the gut is critical to the development of an appropriate stress and also that there is and ansire there is subsided, microbiome tends to revert to stableintestinal epithelial cells and mimic the effects of morphine in promoting analgesia.permeability. Thus altering microbiome. Usually nonpathogenic bacteria in the colon are restrained by the infantis shown toMathematical epithelial to revert to stabledemonstrates microbial content of the gut is critical to appropriate stress and also that there is early life where colonization mustintestinal epithelial cells and mimic the effects of morphine in promoting analgesia.permeability. Thus altering microbiome. Usually nonpathogenic bacteria in the colon are restrained by the intestinal epithelium.Mathematical epithelial infantis shown to microbiome tends to revert to stablemicrobiome tends colonization mustintestinal epithelial infantis shown to in plasma tryptophan in plasma tryptophanpermeability of the gut allowing bacteria and antigens to cross the
than 1000 species and more than 7000 strains. Once threat (infection, antibiotics) has subsided, microbiome tends to revert to stablemicrobial content of the gut is critical to the development of an appropriate stress and also that there is an narrow window in early life where colonization mustcells and mimic the effects of morphine analgesia.altering microbiome. Usually nonpathogenic bacteria in the colon are restrained by the intestinal epithelium.than 1000 species and more than 7000 strains. Once threat (infection, antibiotics) has subsided, microbiome tends to revert to stablemicrobial content of the gut is critical to the development of an appropriate stress and also that there is ann arrow window in early life where colonization mustcells and mimic the effects of morphine in promoting analgesia.altering microbiome. Usually nonpathogenic bacteria in the colon are restrained by the intestinal epithelium.the development of an antibiotics) has subsided, microbiome tends to revert to stablean narrow window in colonization mustinfantis shown to in plasma tryptophan levels, a precursor to and antigens to cross the
and more than 7000 strains. Once threat (infection, disease, diet and antibiotics) has subsided, microbiome tends to revert to stablethe gut is critical to the development of an appropriate stress in promoting analgesia.Usually nonpathogenic bacteria in the colon are restrained by the intestinal epithelium.000 strains. Once threat (infection, disease, diet and antibiotics) has subsided, microbiome tends to revert to stablethe gut is critical to the development of an appropriate stress and also that there is early life where colonization musteffects of morphine in promoting analgesia.Usually nonpathogenic bacteria in the colon are restrained by the intestinal epithelium.and also that there is infantis shown to microbiome tends to revert to stablean narrow window in early life where colonization musteffects of morphine in promoting analgesia.Usually nonpathogenic bacteria in the colon are restrained by the intestinal epithelium.1000 strains. Once threat (infection, disease, diet and ant also that there is an anarrow window in early life where to revert to stableinfantis shown to in plasma tryptophan and antigens to cross the
7000 strains. Once threat (infection, disease, diet and antibiotics) has subsided, microbiome tends to revert to stablethe development of an appropriate stress the development of an appropriate stress infantis shown to induce an elevation in plasma tryptophanbacteria in the colon are restrained by the intestinal epithelium.7000 strains. Once threat (infection, disease, diet and antibiotics) has subsided, microbiome tends to revert to stablethe development of an appropriate stress response later in life and also that there is an narrow window in induce an elevation in plasma tryptophan levels, a precursor tobacteria in the colon are restrained by the intestinal epithelium.7000 strains. Once threat (infection, disease, diet and antibiotics) has subsided, microbiome tends to revert to stableinfantis shown to induce an elevation in plasma tryptophan levels, a precursor to and antigens to cross the
threat (infection, disease, diet and antibiotics) hasappropriate stress response later in life and also that there is and also that there is infantis shown torestrained by the intestinal epithelium.subsided, microbiome tends to revert to stablean narrow window in early life whereinduce an elevation in plasma tryptophanresubside and antigens to cross the
disease, diet and antibiotics) has subsided, microbiome tends to revert to stableresponse later in life and also that there is an also that there is an narrow window in early life where colonization must(Desbonnet) B. infantis shown to induce an elevation in plasma tryptophan levels, a precursor tointestinal epithelium. Psychological stress can increase permeability of the gut allowing bacteria and antigens to cross the
antibiotics) has subsided, microbiome tends to revert to stableand also that there is an narrow window in early life where colonization mustinfantis shown to induce an elevation in plasma tryptophanPsychological stress can increase permeability of the gut allowing bacteria and antigens to cross the
subsided, microbiome tends to revert to stablean narrow window in early life where colonization mustinduce an elevation in plasma tryptophanincrease permeability of the gut allowing bacteria and antigens to cross the
microbiome tends to revert to stableearly life where colonization mustin plasma tryptophan levels, a precursor tothe gut allowing bacteria and antigens to cross the
to revert to stable colonization must levels, a precursor to and antigens to cross the
diversity occur to ensure serotonin (5-HT) a epithelial barrier
established in normal development key neurotransmitter activating mucosal
infancy. of the HPA axis. in the brain. The immune response altering
The number of implication is that proinflammatory
bifidobacterium the microbiota might cytokines and perhaps
decreases with age play a role in the activate the HPA.
and parallels regulation of CNS as Prenatal stress reduced
changes in health well as enteric the overall number of
status and nervous system 5- bifidobacteria and
decreased HT synthesis. lactobacilli.
plasticity within
the HPA. HPA

		strongly implicated in susceptibility to development of obesity and metabolic syndrome.			
Ransom, L., Lan, I & Murtha Localizat Thinning Prematur Membrar e83338.	K., Grotegut, C., C., Bentley, R., Feng, L., Heine, R., Seed, P., a, A. (2014). Bacteria ion and Chorion among Preterm e Rupture of nes. <i>PLoS ONE 9</i> (1): 71/journal.pone.0083	Examine fetal membrane chorion thinning and to correlate to bacterial presence in PPROM, preterm, and term subjects.	Paired membrane samples (membrane rupture and membrane distant) were prospectively collected from: PPROM = 14, preterm labor (PTL = 8), preterm no labor (PTNL = 8), term labor (TL = 10), and term no labor (TNL = 8), subjects.	Sections were probed with cytokeratin to identify fetal trophoblast layer of the chorion using immunohistochemist ry. Fluorescence in situ hybridization was performed using broad range 16 s ribosomal RNA probe. Images were evaluated, chorion and choriodecidua were measured, and bacterial fluorescence scored. Chorion thinning and bacterial presence were compared among and between groups using	In all groups, the fetal chorion cellular layer was thinner at rupture compared to distant site. Further, chorion thinning was greatest among PPROM subjects compared to all other groups combined. Bacteria counts were highest among PPROM subjects compared to all other groups regardless of site sampled or histologic infection. In PPROM fetal chorion, we demonstrated pronounced global thinning. Although cause or consequence is uncertain, bacterial presence is greatest and inversely correlated with chorion thinning among PPROM subjects.

Gareau, M., Wine, E., Rodrigues, D., Cho, J., Whary, M., Philpott, D., MacQueen, G., & Sherman, P. (2011). Bacterial infection causes stress-induced memory dysfunction in mice. <i>Gut 60</i> , 307-317.	Examine whether acute enteric infection or absence of gut microbiota has an effect on behavior specifically anxiety and non- spatial memory formation.	Determine whether Clostridium Rodentium (causing colitis) infection resulted in anxiety like behavioral or memory changes & whether probiotics provide protection.	Student's t-test, linear mixed effect model, and Poisson regression model. Behavior observed in C57 IBL/6 and germ free mice after inoculation of C rodentium in the presence and absence of water avoidance stress (WAS). Probiotics administered and	C rodentium causes stress induced memory dysfunction in mice Probiotics given before and during prevent memory dysfunction Germ free mice lack memory even in absence of stress
Kang, D., Gyoon, J., Ilhan, Z., Wallstrom, G., LaBaer, J., Adams, J., & Krajmalnik- Brown, R. (2013). Reduced Incidence of Prevotella and Other Fermenters in Intestinal Microflora of Autistic Children. <i>PLoS ONE 8</i> (7): e68322. doi:10.1371/journal.pone.0068 322	Define systemic changes in gut microbiome associated with autism and autism- related GI problems.	20 neurotypical and 20 autistic children accompanied by a survey of both autistic severity and GI symptoms.	evaluated. We compared gut microbiomes of GI symptom-free neurotypical children with those of autistic children mostly presenting GI symptoms.	Abnormal breakdown of carbohydrates affects the amount and type of nutrients for intestinal bacteria, thereby, resulting in ill digestive bacteria-contributing to poor digestion, intestinal inflammation, & more sever autism. Seven metabolites noted, 3 of significance. 1. Homovanillate, normally produced when dopamine is broken down, 2. N,N- dimethylglycine was found at lower levels

Kennedy, P., Clarke, G., Eamon, Q., Groeger, J., Dinan, T., & Cryan, J. (2012). Gut memories: Towards a cognitive	Summarize data on cognitive function in IBS-stress, immune activation	Fig 1 pg. 312. Pathways involved in the bidirectional comm the CNS	Glucocorticoids released from adrenal glands through activation of	(used before to decrease autism symptoms). 3. The ratio of glutamine to glutamate was higher. An imbalance between glutamate and GABA transmission has been associated with autistic- spectrum type behaviors such as hyper-excitation. Fecal transplant studies? Germ free rodents found to with reduced hippocampal and cortical BDNF levels and
neurobiology of irritable bowel	and chronic pain-	modulates GI	the HPA axis	exaggeraged HPA axis
syndrome. <i>Neuroscience and</i> <i>Biobehavioral Reviews, 36</i> ,	an how they manifest in IBS,	functioning and in turn, signals from the	impacts the immune system while	response to stress which normalized with probiotic
310-340.	impact central	viscera to influence	immune parameters	Bifidobacterium infantis
	neurobiological	brain. CNS influences	can stimulate HPA	(Sudo).
	mechanisms.	GI motility and	axis.	Reduction in visceral
		secretion via	Proinflammaotry	pain perception exhibited
		descending autonomic	cytokines impact	by rats fed a
		pathways (sympathetic &	centrally via stimulation of the	lactobacillus(Kamiya)or B.infantis.
		(sympathetic & parasympathetic) by	vagus nerve.	D.IIIIanus.
		modulating activity of	Immune system	
		the enteric system.	influences the	
		Ascending visceral	functioning NES	
		signals arising from	which impacts the	
		the ENS are received	CNS. Enteric	
		by higher brain	microbiota has key	
		regions via ascending	role in development	

Koloski, N., Jones, M., Kalantar, J., Weltman, M., Zaguirre, J., Talley, N. (2012). The Brain-Gut Pathway in Functional Gastrointestinal Disorders Is Bidirectional, <i>Gut</i> , <i>61</i> (9), 1284-1290.	Determine the directionality of the brain gut mechanism in functional GI disorders (FGIDs) i.e. IBS & functional dyspepsia (FD).	autonomic, spinal, and vagal afferents. Stress mood, cognitions and emotion can influence descending pathways to modulate GI function and the perception of signals arising from the viscera via limbic, paralimbic and cortical brain regions. 12 year longitudinal, prospective, population based study, randomized. N=1775 participants in Australia	of systemic and mucosal immune systems and also in the normal development of both the GI tract and CNS. Other mediators essential to brain gut axis signaling are neurotransmitters and neuropeptides such as serotonin, noradrenaline, and corticotrophin releasing factor. Survey completed in 1997 on FGIDs. N=1002 completed survey in 12 year f/u. Anxiety and depression measured using the Delusion Symptoms States Inventory at baseline and f/u.	The central nervous system and gut interact bidirectionally in FGIDs. Among people free of a FGID at baseline, higher levels of anxiety but not depression at baseline was a significant independent predictor of developing new onset FGIDs 12 years later. Among people who did not have elevated levels of anxiety and depression at baseline, those with a FGID at baseline had
				,

15		

				of anxiety and depression at f/u. In IBS higher levels of anxiety and depression at baseline were predictive of IBS at f/u, while only depression was predictive of FD at f/u.
Konturek, P., Brzozowski, T., & Konturek, S. (2011). Stress and the gut: Pathophysiology, clinical consequences, diagnostic approach and treatment options. <i>Journal of</i> <i>Physiology</i> , 62(6), 591-599.	Interactions between the CNS and The enteric nervous system or ENS(aka little brain) regulates physiological gut functions including secretion, motility, and release of neuropeptides and hormones.	Brain communication through parallel pathways- ANS, HPA, and the brain gut axis (BGA). Cross talk between gut micorbiota, immune system, & BGA causing diseases of gut if exposed to stress.	BGA and microbiota communicate via direct interaction with mucosal cells (endocrine message), via immune cells(immune message), and via contact to neural endings(neuronal message). Stress causes changes in composition of microbiota inducing changes in neurotransmitter and proinflammatory cytokine levels affecting microbiota.	Exposure to chronic stress is major risk factor for pathogenesis for GER, PUD. IBD, IBS. The dysregulation of BGA plays a central role in pathogenesis of stress induced diseases. Stress increases intestinal permeability, visceral sensitivity, alteration of GI motility and leads to profound mast cell activation resulting in release of proinflammatory mediators.
Koren, O., Goodrich, J.,	How does	Prospective, randomized mother-	Obtained stool	Pregnancy associated
Cullender, T., Spor, A., Laitinen, K., Backhed, H.,	pregnancy alter the gut microbiome?	infant study 91	samples, diet information, and	with profound alteration of gut microbiota. 1 st
Gonzalez, A., Werner, J.,	6	pregnant women	clinical data from	trimester similar to non-
Angenet, L., Knight, R.,		Infant microbiota	pregnant women in	pregnant female and male
Backhed, F, Isolauri, E.,		studied at 1 month	the first and third	controls. 3 rd trimester, the

Salminen, S., & Ley, R.		old, 6 months old, and	trimesters.	structure and composition
(2012). Host remodeling of		4 years old.		resembles dysbiosis.
the gut microbiome and				Dysbiosis, inflammation,
metabolic changes during				and weight gain =
pregnancy. Cell, 150, 470-				metabolic syndrome.
480.				Same changes seen in
				pregnant women.
				Hyperglycemic state
				provides continuous
				supply of nutrients to
				fetus. Adiposity prepares
				female body for energetic
				demands of lactation.
				These metabolic changes
				necessary for healthy
				pregnancy.
				Children's microbiota
				most similar to mother's
				microbiota at T1. T3 had
				no bearing.
Lee, Y., & Chua, A.,	Intestinal	Probiotics improved		Gareau et al
(2011). Influence of Gut	microbiota	memory deficits,		demonstrated the
Microbes on the Brain-Gut	influences central	normalized HPA and		beneficial effect of
Axis. Journal of	control of BGA.	colonic injury,		probiotics in preventing
Neurogastroenterology and	Gareau et al	restored hippocampus		stress induced memory
Motility, 17(4), 427-429.	exposed link	brain derived		deficits, normalizing
	between enteric	neurotropic (BDNF)		alteration in the HPA axis
	infection and	& c-Fos (responsible		and colonic injury.
	impaired learning	for neuronal		Associated with the
	& memory in the	activation), reduced		hippocampus brain-
	presence of	serum corticosterone,		derived neurotropic
	psychological	ameliorated colonic		factor (BDNF) & c-Fos
	stress. Memory	injuries and		expression in the context

	impairment persisted after bacterial clearance and resolution of pathogens.	normalized changes in intestinal microbiota.		of normalized microbiota. Germ-free mice also displayed an absence of memory, providing support for the requirement of commensal gut microbiota in memory.
Leslie, M. November 13, 2014. Cells can fight viruses, even when stimulated to combat bacteria. Science Magazine. http://news.sciencemag.org/ biology/2014/11/cells-can- fight-viruses-even-when- stimulated-combat-bacteria	Can flagellum initiate immune response again rotavirus?	Mice injected with flagellin under skin.	Flagellin appears to stimulate intestinal epithelial cells to become more virus- resistant, the researchers found. Gewirtz says his team is investigating whether treatment with flagellin (or IL- 18 and IL-22, the molecules it is acting through) may be helpful in fighting other viral infections such as norovirus.	Treatment with bacterial flagella could prevent rotavirus infection in mice as well as clear chronic infections. For this effect to occur, they say that both the flagellin receptors Toll-like receptor 5 (TLR5) and NOD-like receptor C4 (NLRC4) were needed. The flagella seemed to set off TLR5 activation in dendritic cells that then induced cytokine interleukin-22 (IL-22), which, in turn, led to changes in gene expression in intestinal epithelial cells.
Li, W., Dowd, S., Scurlock, B., Acosta-Martinez, V., & Lyte,	Whether bacterial diversity due to	5 week old male CF1 mice randomly	Trained and tested on a hole-board open	The BD diet group had significantly higher
M. (2009). Memory and	dietary	assigned to receive	field apparatus.	bacterial diversity and
learning behavior in mice is	manipulation is	standard diet or chow	Behavioral testing.	displayed improved
temporally associated with	correlated with	with 50% lean ground	Colonic stool	working and reference

diet-induced alterations in gut bacteria. <i>Physiology &</i> <i>Behavior</i> , 96, 557-567.	memory and learning	beef for 3 months	samples collected/analyzed via ARISA and bTEFAP for microbial diversity	memory, and reduced anxiety levels. Indicates correlation between dietary induced shifts in bacteria diversity and animal behavior that may indicate a role for gut bacterial diversity in memory and learning.
Maes, M., Kubera, M., & Leunis, J. (2008). The gut- brain barrier in major depression: Intestinal mucosal dysfunction with n increased translocation of LPS from gram negative enterobacteria (leaky gut) plays a role in the inflammatory pathophysiology of depression. Neuroendocrinology, 29(1), 117-124.	To examine another immune pathway-whether MDD is accompanied by increased serum levels of IgM and IgA against LPS of 6 enterobacteria indicating an immune response directed to endotoxins secreted by gram- negative enterobacteria and which cannot be detected when the gut-intestinal lining is intact.	51subjects, 23 controls, 28 MDD patients. Excluding other psychiatric conditions, CFS pts, those taking psychotropic drugs, abnormal lab values, and acute allergic reactions.	Total sum of FibroFatigue scale and CFS rating scale to demonstrate severity. Correlation with IgM and IgA levels against LPS in CFS. Labs drawn to determine the IgM and IgA against LPS of 6 different enterobacteria.	MDD is accompanied by increased serum levels of IgM and IgA directed against LPS of gram negative enterobacteria. IgM-IgA values are r/t MDD/CFS symptoms. Increased levels accompanied by increased gut permeability and IRS against LPS of enterobacteria. The epithelial barrier 1.separates the luminal contents from the interstitium, and which protects against microorganisms including gram negative bacteria, larger toxic and antigenic molecules; 2. Transportation of fluids,

Running Head: GUT AND DISEASE

				electrolytes, and nutrients across the intestinal wall; 3. Secretion of IgA to
				bind to bacteria
				preventing attachment to
				epithelial cells. IRS
				activation causes loss of
				protective barrier with
				enlarged spaces between
				the cells of the gut wall
				aka leaky gut.
				Systemic increases in
				LPS cause central
				neuroinflammation with
				increased TNFalpha that
				remains elevated for 10
				months. Activation of
				brain migroglia means elevated proinflammatory
				mediators (IL-6, IL-1B,
				TNFalpha) inducing
				MDD symptoms.
				Therefore, MDD pts
				screened for IgM and IgA
				levels against LPS of
				gram negative bacteria. If
				leaky gut present, treat
				with antioxidants and
				appropriate diet.
Matamoros, S., Gras-Leguen,	Most of human	Preterm infants	Antibiotic therapy in	Beneficial effects-
C., Le Vacon, F., Potel, G., &	microbiome	Enterobacteriaceae &	infants-microbiota	protection against
de La Cochetiere, M. (2013).	located in digestive	other pathogenic	differences detected	infections, diarrhea,
Development of intestinal	tract1014	bacteria C.difficile or	1month after	necrotizing enterocolitis,

microbiota in infants and its	bacterial cells &	Kleb.pneumonia-	treatment-reduced	eczema, and atopic
impact on health. Trends in	>100x more genes	indicating acquisition	microbial fecal	dermatitis.
<i>Microbiology</i> , 21(4), 16-173.	than human	of hospital related	diversity &	Csection increases
	genome.	microbiota.	microbial counts.	chances of celiac dz, type
	Human	Full term- higher	Antibiotic therapy in	1 diabetes, and asthma-
	Microbiome	diversity	mothers (prenatal or	generally associated with
	Project	Bifidobacterium,	breastfeeding)	excessive or aberrant T
	investigating	Lacobacillus, & Strep.	associated with less	helper responses.
	diversity of human	Influenced by mother-	Bacteroides,	Children exposed to
	bacterial	microbiota	Atopobium, and	antibiotics 0-6months
	population. Only	functionally and	lower total sum.	have significantly higher
	25% has been	phylogenetically close	*reduction of	body weight than
	cultured so far.	to mothers at 1 month	phylogenetic	unexposed children.
	Initial low	of age.	diversity in infants	(Tresande, L. et al.
	diversity and	Mode of delivery-	linked with neonatal	(2013). Infant antibiotic
	complexity, slowly	Csection vs vaginal.	sepsis.	exposures and early life
	develop and	Bifidobacterium high	-	body mass. Int. J. Obes,
	mature reaching	in vaginal. Skin		37, 16-23.
	adult state around	contact with Csection.		
	3 y/o.	Mode of feeding-		
	Classic pattern-	Breast milk important		
	born with E.coli	for early gut		
	and	colonization with		
	Enterobacteriaceae	bifidobacterium and		
	. When depleted of	lactobacillus w/low		
	O2 gut becomes	counts of bacteroides,		
	strictly anaerobic-	clostridium coccoides,		
	Bifidobacterium,	staph, and		
	Clostridium, &	enterobacteriaceae.		
	Bacteriodes,	BM is source for		
	Ruminococcus.	oligosaccharides-exert		
		a strong prebiotic		
		effect for the neonates		
 I				

Mayer, E. (2011). Gut feelings: the emerging biology of gut- brain communication. Nat Rev Neuroscience, 12(8), 1-30.	200-600 million neurons in ENS = to # of neurons in spinal cord. It interfaces with largest body surface-intestinal surface area is 100 times larger than the surface area of skin-with largest pop of commensal microorganisms of all surfaces-100 trillion microorganisms form 40k species with 100xthe number of genes in human genome.	microbiota. Environment- cultural and geographical factors influence development. Major source of bacteria that will colonize gut in 1 st year. With gut- associated immunity containing 2/3 of immune cells. And thousands of enteroendocrine cells containing more than 20 hormones. Three basic mechanisms by which sensory info is encoded: primary afferent, immune cells, and enteroendocrine cells.	Neuronal Signaling: Afferent Neurons Divided Into Extrinsic (Spinal & Vagal Afferents), Intrinsic, Primary Afferents (Ipans). Intrinsic And Extrinsic Reflex Regulation Of Intestinal Function Relies Primarily On Intrinsic Reflex Regulation, Mediated By Ipans And Enteric Motorneurons.	Endocrine And Paracrine Signaling: <1% of gut epithelial cells, comprise largest endocrine organ of body. Involved in both regulation of digestive and functions and CNS processes through the endocrine and paracrine signaling to vagal afferents. Immune related signaling: 70-80% of immune cells within gut lymphoid tissue. Immune cells remain immunologically hyposresponsive to commensal bacteria but respond to pathogens suggesting intestinal
	-			respond to pathogens

Messaoudi, M., Lalonde, R., Violle, N., Javelot, H., Desor, D., Nejdi, A., Bisson, J., Rougeot, C., Pichelin, M., Cazaubie,l M., & Cazaubiel, J. (2011). <i>The British Journal of</i> <i>Nutrition, 105</i> (5), 755-64.	The aim of the present study was to investigate the anxiolytic-like activity of PF in rats, and its possible effects on anxiety, depression, stress and coping strategies in healthy human volunteers.	Preclinical study – Rats Double-blind, placebo controlled, randomized parallel group study, healthy human volunteers	Rats administered probiotic formulation (PF) then tested using conditioned defensive burying test. Volunteers administered PF for 30 days then analyzed using Hopkins Symptom Checklist (HSC), Hospital Anxiety and Depression Scale (HADS), the Perceived Stress Scale, the Coping Checklist (CCL), & 24hr urinary free cortisol (UFC).	absence of full activation of the innate and adaptive immune response. Daily administration of PF reduced anxiety like behavior in rats and alleviated psychological distress in volunteers. Taken in combination, L. helveticus and B.longum display anxiolytic like activity in rats and beneficial psychological effects in humans
Neufeld, K., Kang, N., Bienenstock, J., & Foster, J. (2011). Reduced anxiety-like	Does commensal intestinal microbiota	Investigated the basal behavior of adult Germ-free (GF) mice,	Tissue and blood samples collected. Corticosterone	Germ free mice, compared to SPF mice, exhibited anxiety in the
behavior and central	normally	Swiss Webster female	analysis performed.	EPM. There was also a
neurochemmical change in	communicate with	mice in the elevated	Locomotor activity	decrease in the N-methyl-
germ-free mice.	the brain and does	plus maze (EPM) and	assessed.	D-aspartate receptor
Neurogastroenterology &	their presence	compared this to		subunit NR2B mRNA
Motility, 23, 255-e119.	influence CNS	conventionally reared		expression in the central

		development and behavior?	specific pathogen free(SPF) mice.		amygdale, increased brain-derived neurotrophic factor expression and decreased serotonin receptor in the hippocampus. The presence or absence of conventional intestinal microbiota influences the development of behavior, and neurochemical changes in the brain.
(N F C	D'Hara, A., & Shanahan, F. (2007). Gut Microbiota: Mining for Therapeutic Potential. Clinical Gastroenterology and Hepatology, 5, 274-284.	Intestine diverse and dynamic bacterial community that is only separated by single layer of epithelial cells. Bacteria >genome 10 fold.	Mammalian fetuses are born germ-free but after birth, establishment of resident microbiota is driven by environmental factors such as mode of delivery, type of infant diet, hygiene levels, and medication.	Along epithelium, enteric bacteria form a natural defense barrier against exogenous microbes. Colonization increases glucose uptake in gut, and compared with colonized mice, germ-free mice require a greater caloric intake to sustain a normal body weight.	This implicates intestinal bacteria as modulators of fat deposition in the host. Individual's gut microbiota has specific metabolic efficiency, and differences in gut microbiota composition between individuals might regulate energy storage and predispose to obesity.
Т Н Н h	Ohland, C., Kish, L., Bell, H., Thiesen, A., Hotte N., Pankiv, E., & Madsen, K. (2013). Effects of Lactobacillus nelveticus on murine behavior are dependent on diet and	Determine whether the modulatory effects of probiotics differ depending on diet and mouse	Wild type mice and IL-10 deficient mice	Fed either a lab chow diet or western style diet with/without the administration of Lacotbacillus	L. helveticus effects depend on mouse genotype and diet. Overall alleviates psychological consequences of

genotype and correlate with alterations in the gut microbiome. <i>Psychoneuroendocrinology</i> , <i>38</i> , 1738-1747.	genotype.		helveticus. Intestinal immune function analyzed for cytokine expression. Memory and anxiety assessed using Barnes maze. Fecal	intestinal disease. Combo of probiotic and western diet exacerbate. Diet is significant confounding factor in probiotic effect.
Qin, J., Yingrui, L., Cai, Z., Li, S., Zhu, J., Zhang, F., Liang, S., Zhang, W., Guan, Y., Shen, D., Peng, Y., Zhang, D., Jie, Z., Wu, W., Qin, Y., Xue, W., Li, J., Han, L., Lu, D., Wu, P., Dai, Y., Sun, X., Li, Z., Tang, A., Zhong, S., Li, X., Chen, W., Xu, R., Wang, M., Feng, Q., Gong, M., Yu, J., Zhang, Y., Zhang, M., Hansen, T., Sanchez, G., Raes, J., Falony, G., Okuda, S., Almeida, M., LeChatelier, E., Renault, P., Pons, N., Batto, J., Zhang, Z., Chen, H., Yang, R, Zheng, W., Li, S., Yang, H., Wang, J., Ehrlich, S., Nielsen, R., Pedersen, O., Kristiansen, K., & Wang, J. A metagenome-wide association study of gut microbiota in type 2 diabetes. <i>Nature 490</i> , 55-60.	Assess and characterize the gut microbiota in type 2 diabetics	Two staged Metagenome-wide association study (MGWAS) performed on 345 Chinese volunteers	microbiota analyzed. two-stage MGWAS based on deep shotgun sequencing of the gut microbial DNA	Identified and validated approximately 60,000 type-2-diabetes- associated markers and established the concept of a metagenomic linkage group, enabling taxonomic species-level analyses. MGWAS analysis showed that patients with type 2 diabetes were characterized by a moderate degree of gut microbial dysbiosis, a decrease in the abundance of some universal butyrate- producing bacteria and an increase in various opportunistic pathogens, as well as an enrichment of other microbial functions conferring sulphate reduction and

Rao, V., Bested, A., Beaulne, T., Katzman, M., Iorio, C., Berardi, J., & Logan, A. (2009). A randomized, double- blind, placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome. GutDetermine how the administration of Lactobacillus casei Shirota to CSF (Chronic Fatigue Syndrome) patients influences mood related symptoms39 CFS patients 18-65 y/o randomized suitable to complete two month study with depression and anxiety disorders only who are not bedriddenInitially completed Beck Depression Inventory (BDI) & Beck Anxiety Inventory (BAI).Treatment group showed moderate increases in fecal total aerobes and anaerobes with anaerobes with significant increases in anxiety disorders only who are not bedriddenTreatment group showed moderate increases in Inventory (BDI) & significant increases in Stool samples taken.Pathogens, 1-6Determine how the administration of Lactobacillus casei39 CFS patients 18-65 y/o randomized suitable to complete two month study with depression and anxiety disorders only who are not bedriddenInitially completed Beck Anxiety Inventory (BAI).Treatment group showed moderate increases in fecal total aerobes and anaerobes with Lactobacillus - contributing towards predominance of bacteri associated with healthy BDI and BAI and second stool analysis conducted.	Quigley, E. (2008). Probiotics in functional gastrointestinal disorders: What are the facts?: Current Opinion in Pharmacology, 8, 704-708.	probiotics do not replace pathogens; rather they increase bacteriocins, inhibit bacterial translocation, enhance mucosal barrier function, generating signals with the epithelium and immune system to modulate the IRS.	Probiotics offer considerable potential in treatment of functional GI disorders such as IBS. However, more large randomized double blind studies on human subjects are needed.		oxidative stress resistance.
Tan, M., Zhu, J., Du, J., Zhang, Examine whether Prospective Probiotic group Probiotics group had	T., Katzman, M., Iorio, C., Berardi, J., & Logan, A. (2009). A randomized, double- blind, placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome. <i>Gut</i> <i>Pathogens</i> , 1-6	Determine how the administration of Lactobacillus casei Shirota to CSF (Chronic Fatigue Syndrome) patients influences mood related symptoms	y/o randomized suitable to complete two month study with depression and anxiety disorders only who are not bedridden	Beck Depression Inventory (BDI) & Beck Anxiety Inventory (BAI). Stool samples taken. Consumed probiotic or placebo for 8 weeks. Then reevaluated using BDI and BAI and second stool analysis conducted.	fecal total aerobes and anaerobes with significant increases in Bifidobacteria and Lactobacillus – contributing towards predominance of bacteria associated with healthy GI system. According to BDI and BAI scores, significant improvement in anxiety scores with treatment group.

		1	1	·
L., & Yin, H., (2011). Effects	the enteral	randomized single	given 21 day course	lower incidence of
of probiotics on serum levels	administration of	blind study. 52	of probiotics via NG	nosocomial infections
of Th1/Th2 cytokine and	probiotics would	patients with severe	tube	with shorter ICU stays.
clinical outcomes in severe	adjust the Th1/Th2	TBI and Glascow		Therefore probiotics
traumatic brain-injured	imbalance and	Coma Scale (5-8).		could attenuate the
patients: a prospective	improve clinical			deviated Th1/Th2
randomized pilot study.	outcomes in TBI			response induced by TBI.
Critical Care, 15, 1-10	patients.			
Theije, C.,, Wu, J., da Silva, S.,	Enteric biopsies of	Colonization of	Prebiotics not only	Probiotics is associated
Kamphius, P., Garssen, J.,	3 autistic children	Clostridium species to	have effect on	with a reduction in the
Korte, S., & Kraneveld, A.	revealed: higher	the expense of	enteric mucosa but	risk of nonspecific GI
(2011). Pathways underlying	number of	Bifidobacterium	also on systemic	infections and lower
the gut-to-brain connection in	infiltrated helper	associated with higher	immunity by	frequency of colic or
autism spectrum disorders as	and cytotoxic T	risks of allergy in	selectively	irritability. Lower levels
future targets for disease	cells an CD19+ B	children and pediatric	stimulating the	of beneficial
management. European	cells; more	IBD.	growth and or	bifidobacterium were
Jouranl of Pharmacology, 668,	infiltration of	GI disturbances, such	activity of	observed in ASD
S70-S80.	helper T cells.	as changes in the gut	Bifidobacteria and	patients. Low levels
	ASD related	microbiota and T cell	lactic acid bacteria	associated with food
	microbial species	infiltration, indicate	in the colon.	allergy, inflammatory
	mainly comprised	altered immune in	Human milk favors	bowel diseases.
	of Clostridium	ASD. Hypothesized	the growth of bifidus	
	strains,	that gut inflammation	flora which activates	
	Ruminococcus,	makes one with	the immune system	
	Bacteroidetes,	genetic predisposition	and defends from	
	Bacteroides,	for ASD more prone	pathogens. Non	
	Firmicutes, and	to express the autistic	digestible	
	Desulfovibrio	phenotype or	oligosaccharides are	
	species.	increases severity.	examples of	
			prebiotics and serve	
			as substrates for	
			bacterial	
			metabolism.	

,		D (1 1	<u>G:</u> 1 (
	Tillisch, K., Labus, J.,	Determine whether	Single center,	Underwent MRI	FMPP associated with
	Kilpatrick, L., Jiang, Z., Stains,	consumption of a	randomized,	before and after	reduced task related
	J., Ebrate, B., Guyonnet, D.,	fermented milk	controlled, parallel-	intervention	response of a distributed
	Legrain-Raspaud, S., Trotin,	product with	arm design. Healthy	measuring brain	functional network
	B., Naliboff, B., & Mayer, E.,	probiotic (FMPP)	women, 18-55 y/o, h	response to an	containing affective,
	(2013). Consumption of	altered intrinsic	no GI or psych	emotional faces	viscerosensory, and
	fermented milk product with	connectivity or	symptoms randomly	attention task and	somatosensory cortices.
1	probiotic modulates brain	responses to	assigned to groups	resting brain	Alterations in intrinsic
	activity. <i>Gastroenterology</i> ,	emotional attention	given FMPP (n=12), a	activity.	activity of resting brain
	144, 1394-1401.	tasks.	nonfermented control		indicated that ingestion
			milk product		of FMPP associated with
			(n=11,control), or no		changes in midbrain
			intervention (n=13)		connectivity that control
			twice daily for 4		central processing of
			weeks.		emotion and sensation.
	Vrieze, A., de Groot, P.,	Show the available	(Borody) 3 pts with	Fecal transplantation	Larger randomized
	Kootte, R., Knaapen, M., van	evidence regarding	MS underwent daily	via enemas, infusion	double blind trials
	Nood, E., Nieuwdorp, M.	the involvement of	fecal transplantation	via duodenal or	implementing gut
	(2013). Fecal transplant: A safe	intestinal	for 1-2 weeks were	gastric tube,	microbiota before and
	and sustainable clinical therapy	microbiota and	asymptomatic (no	colonoscopy and	after fecal transplantation
	for restoring intestinal	human	constipation or	self-administration	intervention showing
	microbial balance in human	(autoimmune)	neurological	via rectum.	clinical outcomes in
	disease? <i>Best Practice</i> &	disease. Also,	disability) ranging		regards to disease states.
	Research Clinical	show the beneficial	from 2-15 years post		regulas to discuse states.
	<i>Gastroenterology</i> 27, 127–137.	or adverse effects	treatment.		
	Gustroemerology 27, 127-137.	of fecal	Can alter insulin		
		transplantation on	resistance and		
		clinical outcomes	clostridium difficile		
		of certain disease	diarrhea.		
		states.	ulaillica.		
	Vrieze, A., Van Hood, E.,	Does rebalancing	Treatment naive male	Underwent small	Significant modification
		the obesogenic	subjects with	intestine biopsies	in intestinal microbiota
	Holleman, F., Salojarvi, J.,		5	-	
	Kootte, R.S., Bartelsman, J.,	microbiota by	metabolic syndrome	and bowel lavage	composition in fecal

$\mathbf{D}_{\mathbf{r}}$				· · · · · 1 · · · · · · · · · · · · · ·
Dallinga-Thie, G., Ackermans,	small intestinal	randomized double	via duodenal tube	samples after allogenic
M., Serlie, M., Oozeer, R.,	infusion of gut	blind trial	then inoculation of	gut microbiota infusion-
Derrien, M., Druesne, A., Van	microbiota from a		autologous or	2.5fold increased.
Hylckama Vlieg, J., Bloks, V.,	lean donor		allogenic gut	increased gut flora
Goren, A., Heilig, H.,	positively affect		microbiota infusion.	increases insulin
Zoetendal, E., Stroes, E.,	(host) metabolism		insulin sensitivity	sensitivity and therefore
DeVos, W., Hoekstra, J., &	and insulin		tested 6 weeks post	decreases insulin
Nieuwdorp, M. (2012). Transer	sensitivity in		as well as measure	resistance
of intestinal microbiota from	subjects with		gut microbiota	
leand donors increases insulin	metabolic			
sensitivity in individuals with	syndrome?			
metabolic syndrome.				
Gastroenterology, 143, 913-				
916.				