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A Framework for Teaching Real-Time Digital Signal
Processing With Field-Programmable Gate Arrays

Tyson S. Hall, Member, IEEE, and David V. Anderson, Senior Member, IEEE

Abstract—Many curricula include separate classes in both dig-
ital signal processing (DSP) theory and very high-speed integtrated
circuit hardware description language (VHDL) modeling; how-
ever, there are few opportunities given to students to combine
these two skills into a working knowledge of DSP hardware design.
A pedagogical framework has been developed whereby students
can leverage their previous knowledge of DSP theory and VHDL
hardware design techniques to design, simulate, synthesize, and
test digital signal processing systems. The synthesized hardware is
implemented on field-programmable gate arrays (FPGAs), which
provide a fast and cost-effective way of prototyping hardware
systems in a laboratory environment. This framework allows
students to expand their previous knowledge into a more complete
understanding of the entire design process from specification
and simulation through synthesis and verification. Students are
exposed to different aspects of signal processing design, including
finite precision, parallel implementation, and implementation cost
tradeoffs.

Index Terms—Digital signal processing (DSP), DSP chip design,
DSP hardware, field-programmable gate array (FPGA), fixed-
point hardware.

I. MOTIVATION

THE digital signal processing (DSP) market and industry
are undergoing a slow, but steady transformation. More

and more advanced signal processing systems are finding their
way into embedded systems. These systems typically have lim-
ited processing resources and stringent power limitations. Often
DSP systems for these devices must be implemented on fixed-
point processors and a small amount of custom or reconfigurable
hardware. The addition of custom hardware requires DSP engi-
neers to leave the comfort of floating-point arithmetic, highly
optimized DSP processors, and even MATLAB and enter the
world of DSP hardware design.

Unfortunately, students graduating from most DSP programs
are left unequipped to deal with the challenges of DSP hard-
ware design and hardware/software co-design. Many curricula
include separate classes in both DSP theory and hardware mod-
eling; however, there are few opportunities given to students
to combine these two skills into a working knowledge of DSP
hardware design [1], [2]. Students often struggle to bridge this
gap between the theory and the hardware implementation of
DSP systems [3]. This paper presents a pedagogical framework
whereby students can leverage their previous knowledge of DSP
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TABLE I
REAL-TIME DSP TECHNOLOGIES AND THEIR PEDAGOGICAL USEFULNESS

theory and very high-speed integtrated circuit hardware descrip-
tion language (VHDL) hardware design techniques to design,
simulate, synthesize, and test digital signal processing systems
[4]. In addition, a course is described that uses this framework
to teach DSP hardware design.

Many courses and textbooks have been developed for
teaching real-time DSP concepts using DSP microprocessors
[5]–[12]. The program presented herein is not designed to
replace or displace DSP microprocessor-based programs; the
goals of the program are different. Programs that rely on DSP
microprocessors as their primary implementation medium tend
to emphasize software programming rather than hardware
design. By using field-programmable gate arrays (FPGAs)
as the core technology, students are given the opportunity to
design custom hardware implementations [13] and investigate
concepts, such as massively parallel algorithms. In addition,
FPGAs can synthesize microprocessor cores, allowing students
to investigate the tradeoffs between hardware and software
implementations.

As illustrated in Table I, FPGAs provide a very versatile plat-
form for teaching real-time DSP implementations. While they
are not optimal for every function, FPGAs do provide the most
flexibility, which proves invaluable in a classroom environment.

0018-9359/$20.00 © 2005 IEEE
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Students can use a single system to explore hardware and soft-
ware designs and to make various design tradeoffs to optimize
their systems for power, area/size, complexity, throughput, la-
tency, etc.

II. COURSE LOGISTICS

This course is a senior-level technical elective sponsored by
the Digital Signal Processing technical interest group within the
School of Electrical and Computer Engineering (ECE) at the
Georgia Institute of Technology (Georgia Tech), Atlanta, and
it is denoted ECE 4273 DSP Chip Design. ECE 4273 is a three
semester-hour course with two hours of lecture and a three-hour
laboratory session each week. The lecture and laboratory mate-
rial are closely coordinated so that topics covered in lecture are
reinforced in a hands-on laboratory experiment within, at most,
a two-week time period.

Encouraging the interaction between students specializing in
DSP and those majoring in computer engineering is one of the
goals of ECE 4273, and this course is designed for students
from both backgrounds. Ideally, an even mix of students from
each major will be enrolled, and laboratory project teams can be
formed by combining students with different specialties. How-
ever, in practice, the majority of students enrolling in this course
at Georgia Tech have been DSP students.

Undergraduate students taking this course are expected to
be familiar with MATLAB, digital filter design, basic trans-
forms, FPGAs, and VHDL. These assumptions are valid given
the enforced prerequisites (a senior-level fundamentals of DSP
course) and the required core curriculum for electrical and com-
puter engineering majors at Georgia Tech, which includes lab-
oratories and classroom lecture on FPGAs and VHDL in the
digital design and computer architecture sequences [14], [15].

ECE 4273 has also proved to be popular among first-year
DSP and computer engineering graduate students. To accom-
modate those students who have not had the prerequisites, lab-
oratory assignments and tutorials on the computer-aided design
(CAD) tool software, FPGAs, VHDL, and MATLAB are pro-
vided during the first few weeks of the course. Many of the un-
dergraduate students have also found these resources useful to
refresh their understanding of the basic concepts.

ECE 4273 has been taught with this course format for two
semesters; the first semester was fall 2002. The high-level ob-
jective for this course is to familiarize students with hardware in-
tegrated circuit (IC) implementations of DSP algorithms. More
specifically, at the end of this course, students are expected to
be able to synthesize digital logic and fixed-point signal pro-
cessing systems using VHDL, be able to design hardware fil-
ters using distributed arithmetic, to optimize a hardware filter
given realistic design constraints using a variety of filter design
techniques, and be familiar with parallel processing structures,
classic DSP microprocessor architectures, and hardware/soft-
ware co-design. At the completion of this course, students filled
out a course survey. With such a brief history, substantial assess-
ment data is not available; however, Table II contains a summary
of the pertinent student evaluation data gathered to date.

After the first offering of this course, the student survey
showed that the students felt the course objectives had been
adequately addressed; however, they ranked course organiza-

TABLE II
STUDENT EVALUATION DATA: INTERPOLATED MEDIANS

tion and planning as the weakest component of the course. To
address this issue, the instructors made three primary improve-
ments to the course. First, new computers, FPGA boards, and
CAD tools were purchased for the laboratory. This upgraded
equipment increased student efficiency in the laboratory by
making compilation times faster and by providing FPGA
boards and tools that were more similar to those tools that
students were using in other courses. Second, lectures were
supplemented with more readings and handouts to provide
additional sources from which students could learn. Finally,
laboratory assignments were reorganized to balance the amount
of time each project required. From the survey data in Table II,
these improvements were rated positively by the students. Not
only did the students’ perception of the course organization and
planning increase, but they also felt that the course better met
the course objectives.

In addition, this course has been found to introduce students
to new opportunities for research. Graduate students who have
taken this course and stayed at Georgia Tech (thus making their
progress easier to track) have successfully integrated this mate-
rial into their research projects. Their research has expanded to
include applied experiments and hardware implementations of
their innovations. At least three published papers [16]–[18] and
two patent disclosures can be directly attributed to their partici-
pation in ECE 4273.

III. TOPICAL COVERAGE

Since the nature of this course is a convergence of DSP and
computer engineering (CMPE), lecture material is pulled from
both of these disciplines. The course schedule typically consists
of one week of lectures on DSP theory, optimization techniques,
etc., followed by one week of implementation-related lectures.
The laboratory projects then provide students with an opportu-
nity to combine these two subjects into a working knowledge of
DSP hardware design.

A. DSP Material Covered

The early lectures on DSP are designed to introduce students
to the basic concepts needed in the rest of the course. Subjects
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covered include an introduction to real-time DSP systems, a
discussion and comparison of different number formats, and an
in-depth look at fixed-point arithmetic and the effects of quan-
tization. The lectures during midsemester focus on filtering
as one of the core DSP building blocks found in signal pro-
cessing systems. These topics include finite-impulse response
(FIR) filter structures, filter design optimizations, the canonical
signed digit format, sums-of-powers-of-two optimizations,
subexpression sharing, and infinite-impulse response (IIR)
filters. Toward the end of the semester, topics are varied from
semester to semester to emphasize the material needed for
the final capstone laboratory project. In the past, the last few
weeks of lectures have covered topics, such as floating-point
arithmetic, adaptive filtering, DSP microcontroller architec-
tures, two-dimensional (2-D) filtering, and hardware/software
co-design.

B. CMPE Material Covered

As discussed previously, the class census has been dominated
by students specializing in DSP. For this reason, lectures on
FPGAs, VHDL, and hardware implementations have had to start
from a very basic point and progress quickly to the DSP imple-
mentation issues that this course should address. Thus, the early
lectures focus on introducing and refreshing students on these
subjects. Topics covered include basic FPGA concepts and ar-
chitectures, introduction to VHDL for synthesis, and a review
of state machine design with an emphasis on VHDL imple-
mentations. Lectures during midsemester correspond with the
DSP material being covered. Subjects covered include FIR filter
implementations, hardware versus software fixed-point multi-
pliers, and distributed arithmetic architectures. The semester
ends with lectures on soft-core microprocessors, hardware im-
plementation of a floating-point arithmetic unit, and implemen-
tations of basic adaptive-filter structures. In addition, commer-
cial DSP microprocessor architectures are investigated and used
in discussions of implementation costs and tradeoffs.

C. Laboratory Projects

The laboratory projects are completed by students in teams
of two. The semester starts with tutorials and basic projects
introducing the CAD tools (Altera’s Quartus II software),
VHDL, and MATLAB. Projects are then assigned that explore
basic implementation concepts, such as buffering, fixed-point
arithmetic, and quantization effects through the design and
synthesis of low-order FIR filters. Later laboratory assignments
cover subjects, such as IIR filters, filter optimization techniques,
and “multiplierless” implementations (e.g., distributed arith-
metic). Most laboratories are designed to take one three-hour
laboratory period to complete. However, this time constraint
requires some of the subjects (such as FIR filtering) to be
broken up into multiple units with each unit being addressed in
a laboratory period.

Each laboratory has multiple components. A prelaboratory
exercise is given to the students a week in advance, and it
includes a problem analysis or theoretical study that ties the
lectures to the laboratory assignment. During laboratories,
students implement a hardware design in VHDL for their DSP

Fig. 1. FPGA board that comes with the Altera Nios Development Kit–Stratix
Edition is shown with a custom USB daughter card attached to it. The USB
daughter card is built around the Phillips PDIUSBD12 chip with implements
the physical-level interface of the USB protocol.

system. Finally, the students test their design and analyze
its performance relative to expected performance using the
MATLAB–FPGA interface.

For the final capstone laboratory project, students are allowed
to form larger teams (up to four members), and they are given
four weeks to complete their projects. Students are given the
choice of proposing their own design project or implementing
the provided one. In either case, the final project is required
to include a soft-core processor synthesized on the FPGA and
custom DSP module (such as a floating-point unit or optimized
hardware fast Fourier transform module). These requirements
allow the students to investigate hardware/software design
tradeoffs and attempt to achieve an optimal partitioning of their
system.

IV. LAB INFRASTRUCTURE

Having a straightforward prototyping system is very impor-
tant to the success of this course. This section describes a plat-
form designed by the authors to facilitate the experiments done
by students in the laboratory exercises.

At the highest level, an environment is needed that contains
both theoretical analysis and hardware implementation capabil-
ities. Currently, these two environments exist separately in the
forms of the MATLAB software and commercial FPGAs. How-
ever, a convenient interface does not exist between these two en-
vironments that meets the needs of the course presented herein.
(While there are commercial interface programs for high-level
programming of FPGA devices, these tend to hide many of
the implementation details that this course is trying to teach.)
To alleviate this problem, a plug-and-play Universal Serial Bus
(USB) connection was created between the PC and the FPGA
[19].

The FPGA board selected for this course is a development
board (Nios Development Kit–Stratix Edition) provided by the
Altera Corporation. A custom daughter card was then developed
for this board to provide the USB capabilities. Fig. 1 shows the
Altera Nios Development board with the custom USB daughter
card attached.
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Fig. 2. This diagram illustrates the data path for the MATLAB–FPGA interface. On the PC side, only the MATLAB executable module had to be created since
most of the USB protocol is already implemented in Windows. On the FPGA side, however, much of the USB and HID protocols had to be implemented in
synthesized hardware on the FPGA.

Fig. 3. USB interface on the FPGA is comprised of four basic blocks. The low-level USB module communicates directly with the PDIUSBD12 chip. The midlevel
USB module implements the command interface protocol for the PDIUSBD12 chip. The high-level USB module implements the USB and HID protocols, and the
sample and buffer module buffers the USB packets and provides a sample-level interface to the students’ code, which is designated as user system here.

The prototyping system requires a similar USB protocol stack
to be implemented on both the PC and the FPGA, as shown in
Fig. 2. On the PC side, most of the USB protocol is already
implemented in Windows. On the FPGA side, however, much
of the USB and human interface device (HID) protocols had to
be synthesized on the FPGA.

A. PC Side

On the PC side, a toolbox of MATLAB functions provides the
ability to send and receive arbitrary waveforms; generate, send,
and receive sinusoidal waveforms; and measure the frequency
response of the hardware system. Supporting the public inter-
face for this toolbox is a MATLAB executable (MEX) dynamic
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Fig. 4. Declarations of the three components here are needed to implement the
FPGA interface. The logic needed to implement the students’ system is located
in the “filter” component. The four modules shown in Fig. 3 are encapsulated
within the usb_interface component.

link library (DLL) that handles communication with the Win-
dows USB and HID application programming interface (API)
[20], [21].

The FPGA implements a USB device that is natively sup-
ported by Microsoft Windows XP. Specifically, the FPGA board
is registered as a generic HID device. When it is connected
to the USB port of a PC, it will be automatically recognized,
and the appropriate Windows drivers will be loaded (i.e., it is a
plug-and-play device).

Once the USB device is connected and the drivers loaded,
MATLAB can communicate with the FPGA board via the
custom USB toolbox created for this course. The core of this
toolbox is found in three main functions: sendcos, sendwave,
and freq_response.

1) Sendcos: The sendcos function sends a sinusoidal wave-
form to the FPGA and returns the output from the FPGA. This
function takes the frequency, duration of the waveform, scaling
factor (resolution), and sampling frequency as input arguments.
Internally, sendcos generates a cosine waveform of the specified
frequency and length with an amplitude of 1.

TABLE III
FILTER COEFFICIENTS

TABLE IV
DISTRIBUTED ARITHMETIC LOOKUP TABLE

2) Sendwave: The sendwave function sends any arbitrary
waveform to the FPGA and returns the output from the FPGA.
This function takes the input waveform and scaling factor (res-
olution) as input arguments. The samples of the input waveform
are expected to be .

3) Freq_Response: The freq_response function uses the
sendcos function to send a range of sinusoidal waveforms to the
FPGA and returns the magnitudes of the respective outputs. In
this way, an experimental frequency response magnitude vector
is generated. If the input frequency vector contains equidistant
values of the form freq freq constant, then
the returned vector represents the magnitudes of the discrete
frequency response .

B. FPGA Side

On the FPGA side, VHDL modules have been created that
implement the USB and HID protocols, receive packets of data
from the USB connection, rebuild the individual samples (cur-
rently supports up to 32-b samples), issue the sample and a
sample clock pulse to the students’ DSP system, receive the
output sample, encapsulate multiple samples into data packets,
and transmit them back to the PC through the USB connec-
tion. The FPGA communicates with the USB bus via a custom
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Fig. 5. Overall structure of the serial distributed arithmetic implementation of an FIR filter is presented here. Note that the address input to the DALUT is formed
from delayed samples of the input signal only.

daughter card built for the FPGA board. The daughter card con-
tains a Phillips PDIUSBD12 chip that handles the physical com-
munication link with the USB connection. For interrupt-based
transfers, this chip has a maximum throughput of 512 Kb/s. By
providing all of this functionality up front, students can concen-
trate on implementing and optimizing the DSP systems and not
the testing infrastructure.

There are four drop-in VHDL modules that provide the
USB functionality to the FPGA. As shown in Fig. 3, the
low-level USB module communicates directly with the Phillips
PDIUSBD12 integrated chip, which handles the physical-level
USB connection to the USB port on the PC. The midlevel USB
module translates the commands from the high-level module
into multiple command and data transfers with the PDIUSBD12
chip. The high-level USB module implements the USB and
HID protocols. The bulk of this module is involved with the
automatic enumeration of the USB device when it is plugged
into a PC as required by the USB specification. Finally, the
sample and buffer module stores the incoming and outgoing
data in first-in, first-out (FIFO) buffers, provides the conversion
between bytes and samples, and generates the sample clock,
which can be used by the students’ code to read the next sample.

The top-level VHDL project file typically contains the dec-
larations and routing logic for at least three components: the
top-level USB interface (containing the four modules shown in
Fig. 3), clock phase-locked loop (PLL) (to generate the 45- and
90-MHz clocks), and the student’s DSP system. These top-level
VHDL component declarations are shown in Fig. 4. Except for
adding the components and respective signal routing code for
these modules to a top-level VHDL design file, the students need
only be concerned with the data and control signals presented at
the interface to the sample and buffer module.

The interface to the filter code is comprised of two data
buses and five control signals. The data buses, sample_in and
sample_out, are both 32 bits long, but only those bits that
are used need to be routed to the students’ component. The
remaining bits of sample_out can be left unattached, and the
remaining bits of sample_in should be tied to the sign bit of the
data coming from the students’ component.

The control signal sample_clock provides a clock that ad-
vances a single period each time a new data sample is output
from the usb_interface component. This signal can be used to

clock the delay registers or otherwise control the data flow for
the filter component.

In addition, the control signal sample_reset provides a reset
that can be triggered by the on-board reset signal or a reset com-
mand from the MATLAB–FPGA toolbox. All filter delay regis-
ters should be cleared on reset to allow accurate system analysis
for successive sine wave inputs.

V. DISTRIBUTED ARITHMETIC LABORATORY

To illustrate the concepts covered in this course and the use-
fulness of the MATLAB–FPGA interface, one of the laboratory
assignments will be examined in this section. The distributed
arithmetic (DA) laboratory steps students through the building
of FIR and IIR filters without the use of hardware multipliers. To
achieve the convolution operations, a sequence of table lookups,
shifts, and additions is used in bit-serial arithmetic fashion [22].

In the prelaboratory assignment (students are expected to com-
plete this sequence before they arrive in the laboratory), students
are asked to design an FIR filter with a given set of constraints.
Students use MATLAB’s Filter Design and Analysis Tool (a part
of the Signal Processing Toolbox and Filter Design Toolbox) to
complete this portion of the project. This nontrivial exercise is re-
quired since the filter must meet specifications even though only
a limited number of bits may be used for the coefficients. Typ-
ically, students are asked to design a seventh- or eighth-order
filter; however, to conserve space in the tables, a third-order
filter with the coefficients in Table III will be illustrated here.

Next, the students generate the fixed-point binary values of
the filter coefficients (Table III) and create the distributed arith-
metic lookup table by adding the appropriate filter coefficients
together as shown in Table IV.

The students then write the VHDL description of the hard-
ware shown in Fig. 5, where the DA lookup table is the one
shown in Table IV. The students’ component is compiled with
the USB interface discussed in the previous section and down-
loaded to the FPGA board. The MATLAB toolbox discussed
previously is used to send sample inputs to the DA component
and receive the outputs from the DA component. Fig. 6 shows
the experimental data collected from the DA filter implemented
on the FPGA. Also shown is the ideal frequency response gener-
ated from MATLAB.
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Fig. 6. (a) This figure illustrates the output of the DA filter for a single cosine waveform. The MATLAB toolbox of functions presented in this paper provides the
interface to the FPGA. In this case, the input (denoted by the solid line) is a 300-Hz sine wave with an 8-kHz sampling frequency. As expected, the output (denoted
by the x’s) is a scaled and shifted version of the input. (b) Frequency response for the DA filter implemented on an FPGA can be generated by plotting the output
magnitudes from input sine waves. This MATLAB toolbox encapsulates this functionality into a single function whose output is similar to the freqz() function
found in MATLAB’s signal processing toolbox. The theoretical frequency response (generated by MATLAB’s freqz() function) is shown with a solid line. The
frequency response measured from the FPGA implementation of the DA filter is shown with the circles.

VI. CONCLUSION

The proliferation of embedded devices, the advances in
field-programmable gate arrays (FPGAs), the advent of struc-
tured application-specific integrated circuits (ASICs), and
many other factors suggest that students preparing to enter
industry specializing in the fields of signal processing or
computer architecture need to have a knowledge of hardware
digital signal processing (DSP) implementations. A course for
teaching the concepts needed when designing embedded signal
processing systems has been described. In addition, a frame-
work that students can use to implement custom DSP hardware
on FPGAs and easily test the performance using a MATLAB
front end has been provided. All of the materials developed
for this course—including the very high-speed integrated
circuit hardware description language (VHDL) components,
MATLAB toolbox, and daughter card PCB files—have been
distributed through the authors’ Website [23].
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