
Southern Adventist University
KnowledgeExchange@Southern

Faculty Works School of Computing

2005

Developing large-scale field-programmable analog
arrays for rapid prototyping
Tyson S. Hall
Southern Adventist University, tyson@southern.edu

Christopher M. Twigg
Georgia Institute of Technology - Main Campus, ctwigg@ece.gatech.edu

Paul Hasler
Georgia Institute of Technology - Main Campus, phasler@ece.gatech.edu

David V. Anderson
Georgia Institute of Technology - Main Campus, dva@ece.gatech.edu

Follow this and additional works at: https://knowledge.e.southern.edu/facworks_comp

Part of the Computer Engineering Commons

This Article is brought to you for free and open access by the School of Computing at KnowledgeExchange@Southern. It has been accepted for
inclusion in Faculty Works by an authorized administrator of KnowledgeExchange@Southern. For more information, please contact
jspears@southern.edu.

Recommended Citation
T. S. Hall, C. M. Twigg, P. Hasler, and D. V. Anderson, “Developing large–scale field–programmable analog arrays for rapid
prototyping,” International Journal of Embedded Systems, Vol. 1, Nos. 3/4, pp.179–192, 2005

https://knowledge.e.southern.edu?utm_source=knowledge.e.southern.edu%2Ffacworks_comp%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://knowledge.e.southern.edu/facworks_comp?utm_source=knowledge.e.southern.edu%2Ffacworks_comp%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://knowledge.e.southern.edu/computing?utm_source=knowledge.e.southern.edu%2Ffacworks_comp%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://knowledge.e.southern.edu/facworks_comp?utm_source=knowledge.e.southern.edu%2Ffacworks_comp%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=knowledge.e.southern.edu%2Ffacworks_comp%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jspears@southern.edu

Int. J. Embedded Systems, Vol. 1, Nos. 3/4, 2005 179

Copyright © 2005 Inderscience Enterprises Ltd.

Developing large-scale field-programmable analog
arrays for rapid prototyping

Tyson S. Hall*
School of Computing,
Southern Adventist University,
PO Box No. 370, Collegedale, TN 37315-0370, USA
E-mail: tyson@southern.edu

Christopher M. Twigg, Paul Hasler and
David V. Anderson
Georgia Institute of Technology,
Atlanta, GA 30332-0250, USA
E-mail: ctwigg@ece.gatech.edu E-mail: phasler@ece.gatech.edu
E-mail: dva@ece.gatech.edu

Abstract: Field-programmable analog arrays (FPAAs) provide a method for rapidly prototyping
analog systems. While currently available FPAAs vary in architecture and interconnect design,
they are often limited in size and flexibility. For FPAAs to be as useful and marketable as modern
digital reconfigurable devices, new technologies must be explored to provide area efficient,
accurately programmable analog circuitry that can be easily integrated into a larger digital/mixed
signal system. By leveraging recent advances in floating gate transistors, a new generation of
FPAAs are achievable that will dramatically advance the current state of the art in terms of size,
functionality, and flexibility.

Keywords: FPAA; field programmable analog arrays; reconfigurable; analog; array.

Reference to this paper should be made as follows: Hall, T.S., Twigg, C.M., Hasler, P. and
Anderson, D.V. (2005) ‘Developing large-scale field-programmable analog arrays for rapid
prototyping’, Int. J. Embedded Systems, Vol. 1, Nos. 3/4, pp.179–192.

Biographical notes: Tyson S. Hall received the PhD, MSECE, and BSCMPE degrees in
electrical and computer engineering from the Georgia Institute of Technology in 2004, 2001, and
1999. He is currently an Assistant Professor in the School of Computing at Southern Adventist
University in Collegedale, Tennessee. His research interests include rapid prototyping of mixed–
signal systems, cooperative analog/digital signal processing, reconfigurable computing, and
embedded systems education.

Christopher M. Twigg received his BSEE and BSCPE from West Virginia University in 2000 and
his MSECE from the Georgia Institute of Technology in 2002. He is currently pursuing his PhD
at the Georgia Institute of Technology. His research interests include Reconfigurable
and Programmable Mixed signal Systems, Cooperative Analog/Digital Signal Processing,
and Floating Gate Circuits.

Paul Hasler received his MS and BSE Degrees in Electrical Engineering from Arizona State
University, Tempe, in 1991, and his PhD Degree from the California Institute of Technology,
Pasadena in Computation and Neural Systems in 1997. He is an Associate Professor in the
School of Electrical and Computer Engineering at Georgia Tech. His current research interests
include low-power electronics, mixed-signal system ICs, floating gate MOS transistors, adaptive
information processing systems, smart sensor interfaces, and device physics related to submicron
and floating gate devices. He received the NSF CAREER Award in 2001, and the ONR YIP
Award in 2002.

David V. Anderson received the BS and MS Degrees from Brigham Young University, Provo,
UT and the PhD Degree from Georgia Institute of Technology (Georgia Tech) Atlanta, GA, in
1993, 1994, and 1999, respectively. He is an Associate Professor in the School of Electrical and
Computer Engineering at Georgia Tech and an Associate Director of the Center for Research in
Embedded Systems Technology. His research interests include low-power signal processing
techniques using both analog and digital hardware. He is a recipient of the 2004 Presidential
Early Career Awards for Scientists and Engineers (PECASE).

180 T.S. Hall, C.M. Twigg, P. Hasler and D.V. Anderson
[[

1 Rapid-prototyping analog systems

The process of designing, fabricating, and testing an analog
chip requires a certain level of expertise and is often long and
expensive. As shown in Figure 1, the process is not unlike
designing digital ASICs (application specific integrated
circuits), except that there are fewer tools and libraries
available to the designer. The traditional analog design cycle

often requires several iterations of the fabrication process,
which with the simulation, VLSI layout, and testing
phases can easily consume a year or more for typical IC
designs. However, an FPAA dramatically reduces the
design cycle by removing the fabrication stage from
the iterative process. Thus, many designs may be tested and
modified within a single day.

Figure 1 This figure illustrates the advantages of designing analog ICs using an FPAA based rapid prototyping technology as opposed
to the traditional design cycle of VLSI layout and fabrication. The traditional analog design cycle often requires 3 or more
iterations of the fabrication process which extends the development process to over a year. With an FPAA based system, designs
can be synthesised, tested and modified 20 or more times within a matter of days, instead of years

Programmable analog devices have benefits and design
similar to FPGAs. Like FPGAs, the analog arrays,
dubbed field programmable analog arrays (FPAAs), are
not optimal for all solutions. They are, however, very
useful for many situations and a solution can be found for
many problems not requiring tight specifications.
Relative to custom designed analog circuits, a design
implemented on an FPAA results in higher parasitics as
well as increased die area for a given design; therefore,
the design always possesses some inefficiencies (measured
in lower bandwidth and higher consumed power). On the
other hand, analog circuit design is often time consuming
and these adverse tradeoffs are well balanced by decreased
time to market.

FPAAs have been of interest for some time, but
historically, these devices have had very few programmable
elements and limited interconnect capabilities, making them
limited in their usefulness and versatility. Currently
available commercial and academic FPAAs are typically
based on op-amp circuits with only relatively few op-amps
per chip (Sivilotti, 1991; Lee and Gulak, 1995, 1991a;
Chang et al., 1996; Anderson et al., 1997; ispPAC
Overview, 2001; Quan et al., 1998; Totally Reconfigurable
Analog Circuit – TRAC, 1999; Looby and Lyden, 1997).
By building larger, more flexible FPAAs, reconfigurable
analog devices will become more analogous to today’s high
density FPGA architectures. This will allow a very useful
rapid prototyping system to be built for analog circuit

development. Furthermore, an integrated, rapid prototyping
system can be built with an FPAA and an FPGA on board
that will allow engineers to prototype analog, digital and
mixed signal systems, all on one station.

The FPAA explored in this paper leverages the recent
advances in floating gate technology to provide
computational logic that is programmable within a compact,
scalable architecture (Hall et al., 2002, 2004a). The
computational logic includes a mix of coarse, medium, and
fine grain blocks to provide a balance between flexibility
and performance. In addition, floating gate transistors are
used to set the biases, coefficients and other parameters of
the computational analog blocks so that the analog elements
are highly configurable, unlike most traditional designs.
Floating gate transistors are also used as the switches.

This provides a very compact switch that can be
programmed ‘on’, ‘off’, or as an in-circuit resistive element.
The ability to use the switches as in-circuit elements results
in both greater flexibility and a smaller area than
traditional designs.

This paper proceeds with an overview of the past FPAA
work in Section 2. In Section 3 the power savings
demonstrated in analog circuits will be discussed and in
Section 4, a brief overview of the advances of floating gate
technologies will be presented. In Section 5, a new
architecture is presented for large-scale FPAAs, including
experimental data from a testbed FPAA fabricated with this
new architecture.

 Developing large-scale field-programmable analog arrays for rapid prototyping 181

2 Overview of past and present FPAAs

Reconfigurable hardware has long been of interest to circuit
designers and engineers. In the digital domain,
programmable logic devices (PLDs) have made a large
impact on the development of custom digital chips by
enabling a designer to try custom designs on easily
reconfigurable hardware. Since their conception in the late
1960s and early 1970s, PLDs have evolved into today’s
high density field programmable gate arrays (FPGAs)
(Wakerly, 1999; Birkner and Chua, 1978; Chow
et al., 1999). Modern FPGAs are widely used in the
laboratory for rapidly prototyping digital hardware, as well
as in production goods to decrease time to market and to
allow products to be easily upgraded after being deployed.

In the analog domain, however, progress has been much
slower. While early analog integrated circuits (ICs) were
often tuneable with adjustable biases, truly reconfigurable
analog circuitry in the form of field programmable
analog arrays (FPAAs) did not emerge until the late 1980s
(Sivilotti, 1991; Gulak, 1995), and commercial offerings did
not reach the market until 1996 (Marsh, 2001).

Field programmable analog arrays (FPAAs) can be
broadly classified into two categories: continuous time
devices and discrete time devices (Ganesan and Vemuri,
2001). There are academic and commercial examples of
both categories as well as advantages unique to each design
methodology. In addition, previous FPAAs have varied
greatly in terms of computational granularity and capability,
interconnect structure, performance, and application focus.

2.1 Discrete time FPAAs

Discrete time FPAAs are typically switched-capacitor
designs. For these circuits, the incoming voltage is
sampled by opening and closing a switch that connects the
input to an initial capacitor as shown in Figure 2. The
switch and capacitor form a type of analog register and
the system’s signal path is partitioned by these registers.
The basic computational elements are usually operational
amplifiers and analog registers, which synthesise a linear
resistor whose value is determined by the switching rate and
capacitor value. The synthesis of linear variable resistors
gives switched-capacitor FPAAs greater flexibility than
traditional continuous time FPAAs; however, they can also
be harder to design well, because the switches and
capacitors can introduce noise and nonlinearities into the
system that must be overcome (Marsh, 2001). In addition,
these designs have a limited bandwidth based on the
sampling rate, are complicated by the need for continuous
time antialiasing and reconstruction filters at the input and
output, and can be large if programmable capacitor arrays
are included (Gulak, 1995; Marsh, 2001).

In the late 1990s, several switched-capacitor FPAAs
were introduced by both academic and commercial entities.
In the academic arena, basic computational elements vary
from the simple operational amplifier (Koneru et al., 1999;
Edwards et al., 2000) to more complex blocks such as a
lossless integrator and lossy integrator connected in a loop

(Kutuk and Kang, 1996). These devices also can have
programmable capacitor and/or programmable resistor
arrays to add programmability (Edwards et al., 2000;
Gulak, 1995). In the commercial arena, Motorola was
one of the first companies to bring a general purpose
FPAA to market with their MPAA020 and MPA1000
series (Bratt, 1998; Anderson et al., 1997; Marsh, 2001);
however, since then, a spinoff company named
Anadigm has marketed these switched-capacitor FPAAs
(Anadigm Company Fact Sheet, 2005). The newest Anadigm
devices have Computational Analog Blocks (CABs) with
two differential operational amplifiers, programmable
capacitor banks, a successive approximation register (for
implementing an A/D converter), and a highspeed
comparator (Anadigm FPAA Family Overview, 2005).
However, even the latest devices are relatively limited,
with only four CABs per chip and are targeted at basic
signal conditioning and filtering applications.

Switched-capacitor designs are not the only discrete
time FPAAs. Switched-current circuits can be used to
build a FPAA. The advantages of this technique include not
requiring operational amplifiers, capability of being
fabricated on standard digital CMOS processes, and
elimination of distortion on the signals due to parasitic
resistances; however, these designs can produce less
accuracy than switched-capacitor circuits, and since the
signals are all currents, a given output stage can only drive
one input stage (Chang et al., 1996).

Figure 2 Most discrete time FPAAs use switched-capacitor
designs. The programmability within switched-
capacitor designs is usually achieved using an array of
capacitors as shown. The effective capacitance at each
switch can be varied by setting the n digital memory
cells controlling switches S1 to Sn. In essence, this
amounts to a Digital-to-Analog Converter (DAC) being
included in each computational block

2.2 Continuous time FPAAs
Continuous time FPAAs typically use an array of fixed
components (often operational amplifiers and/or transistors)
that are interconnected by a switching matrix.
The switches are usually controlled by digital registers,
which can be loaded by an external controller, thus
allowing the FPAA to be configured to implement a
number of different designs. This type of FPAA is
advantageous because potential sampling artefacts are
avoided; antialiasing filters are not needed; common,
relatively easy design processes can be used (e.g., standard
CMOS processes); and large signal bandwidths can be
supported with predictable performance (Marsh, 2001).
However, the switching networks introduce parasitics into

182 T.S. Hall, C.M. Twigg, P. Hasler and D.V. Anderson

the signal path that can limit the bandwidth and add noise
to the system. Some of the literature has focused on
minimising the number of switches in the signal path of
the FPAA (Pierzchala et al., 1995; Embabi et al., 1996;
Lee and Gulak, 1991a, 1991b).

The granularity of the computational logic that forms the
basis of the FPAA’s design is an important design
characteristic. The computational logic is usually arranged
within a Computational Analog Block (CAB) on the FPAA,
and then the CABs are dispersed across the FPAA with some
form of an interconnect network tying them together. As
summarised in Table 1, the finest grain architectures
typically use transistors as the core computational cell.
While these designs offer the most flexibility and
generality, synthesising a sufficiently complex system

requires a large number of transistors to be wired
together. Thus, a large number of switches are introduced
into the signal path. The switch parasitics and finite
resistance increases the noise within the system and
limits the performance/bandwidth (Pierzchala et al., 1995;
Embabi et al., 1996; Klein, 1996). Fine grain FPAAs have
primarily been relegated to research in evolvable hardware
(Keymeulen et al., 2000; Santini et al., 2001; Stoica
et al., 2001), where the lowest level building blocks are
desirable for generating unique designs using nontraditional
design methodologies. Systems that are designed using
genetic algorithms are not as negatively affected by the
parasitics and nonideal resistances of switches, since
these parameters are taken into account and even exploited
throughout the evolutionary design process.

Table 1 Summary of FPAA Granularity: The granularity of the computational logic used in an FPAA impacts the size, performance,
flexibility, and functionality of the device

 Typical computational elements Advantages Disadvantages Primary applications

Fine Transistors Small
Simple CAB design
Generic building blocks

Large no. of switches
Large parasitics

Evolvable hardware

Medium Op-amp
OTA
Current conveyor

Semi-generic building blocks
Moderate CAB design
Large variety of CAB/interconnect
designs

Limited size
Severe
functionality/performance
tradeoff

Filters
Amplifiers
Signal conditioning
Low level
Signal processing

Coarse Fourier processor
‘Expert cell’

Higher performance
Easier user interface

Limited flexibility
Limited functionality

Filters
Signal conditioning

On the coarse grain extreme, one finds FPAAs such as
IMP’s EPAC™devices, which contain an ‘expert cell’ as the
core computational block (Klein, 1996). For the IMP50E10
device, this cell is a very high level block with limited
interconnects that is aimed directly at signal conditioning
applications. The logic within the cell can be configured to
function as an amplifier with an optional low pass filter or
as a comparator with optional hysteresis. There is also a
dedicated D/A converter for defining the reference point for
the comparator. These coarse grain designs sacrifice
flexibility and generality in favour of increased, more
predictable performance (Klein, 1996).

The majority of FPAAs fall in between these two
extremes. A number of FPAAs use an operational
transconductance amplifier (OTA) as the basic
computational element (Ray et al., 2000; Pankiewicz
et al., 2001, 2002; Sanchez-Sinencio et al., 1989; Totally
Re-configurable Analog Circuit – TRAC®, 1999; Pierzchala
et al., 1995). OTAs work well as the basic building block
because their transconductance can be programmed either
by varying the analog bias voltage or by changing the gain
of the output current mirrors (Adams et al., 1989;
Pankiewicz et al., 2002). In addition, it has been shown that
OTAs can implement a wide range of linear and nonlinear
circuits. Several FPAA designs have focused on
synthesising linear circuits and use OTAs to implement

amplification, integration, and filtering functions
(Pankiewicz et al., 2001, 2002; Pierzchala et al., 1995).
Ray et al. (2000) has proposed a more generalised
scheme in which linear circuits are synthesised using an
OTA based lossless integrator and an OTA based lossy
integrator as the basic functional blocks. He also uses an
OTA based multiplier and OTA based integrator as the
basic functional block for synthesising nonlinear circuits
such as amplitude and frequency modulation.
Sanchez-Sinencio et al. (1989) have used OTAs to implement
nonlinear functions such as multiplication, division, square
root, exponentiation, and piecewise linear operations.

Similarly, several FPAA designs have been proposed
using a current conveyor structure as the basic building
block. Current conveyors are similar to OTAs; however,
when used as an amplifier they exhibit a constant bandwidth
that is independent of gain. They also do not require
compensation circuitry to insure stability and thus they can
operate at higher frequencies (Gaudet and Gulak, 1997).
Gaudet and Gulak (1997) have proposed a current conveyor
based FPAA in which each CAB contains a second
generation current conveyor, two programmable capacitors,
and two programmable resistors (transconductors).
This CAB is shown to implement amplification and first
order filtering functions as well as log and antilog
functions with the addition of switchable diodes. Premont

 Developing large-scale field-programmable analog arrays for rapid prototyping 183

et al. (1996) also describe an FPAA based on current
conveyors. Their core cell includes tuneable resistors and a
current conveyor. It is demonstrated that this cell can be
configured to implement a tuneable capacitor, and thus is
suitable for amplification and filtering functions.

Other medium grain computational blocks have been
used in FPAAs as well. Pierzchala et al. (2001) used an
OTA based amplifier/integrator cell that does not require
switches in the signal path. Quan et al. (1998) proposed
a current mode FPAA that uses a cascode current-mode
integrator as the basic building block. This core cell can
implement amplification, integration, and attenuation
with a minimum number of switches in the signal path
(Embabi et al., 1996).

2.3 Interconnect structure

Aside from CAB components, a number of different
interconnect structures have also been proposed for
FPAAs. The most common method of interconnect switch
is a MOS transistor controlled by a digital memory (Lee and
Gulak, 1991b; Pankiewicz et al., 2002; Quan et al., 1998;
Anderson et al., 1997; Chang et al., 1996; Gaudet and
Gulak, 1997). Unfortunately, switch resistance in these
devices can be high and can vary dramatically, based
on the DC bias of the signal making them a limiting
factor in designing large, complex FPAAs (Edwards
et al., 2000). Lee and Gulak used this type of pass
transistor switch in Lee and Gulak (1991a, 1991b);
however, the parasitic effects of these switches greatly
limited the performance and capability of their FPAA
(Lee and Gulak, 1995). So, they replaced the pass
transistors with four transistor transconductors, which
increased the performance and functionality of their FPAA
(Lee, 1995). The new design reduced the parasitic effects,
increased the linearity, and increased the noise immunity.
In addition, a transconductor switch exhibits a linear
resistance, so each switch can also be used as a variable
resistor by driving the gate voltage with a multivalued
memory (or other internal or external signal). However,
the large transistors needed for low frequency operation and
the addition of a multivalued memory for each switch
greatly increases the area required for the interconnects
(Lee and Gulak, 1995).

Other switch designs have been proposed as well.
Premont et al. (1996) used a current conveyor as the
switching element. This was particularly novel, because
they used the current conveyor for both the switching
element and the active computational element. In an effort
to provide a radiation tolerant FPAA for space applications,
Edwards et al. (2000) proposed the use of metal to metal
antifuses for the switches. The antifuse design they used
also has the benefit of a relatively low resistance (in the
15–25 ohm range).

Besides the use of different switches, interconnect
schemes are also varied in overall architecture (see
Figure 3). In the Premont et al. (1996) FPAA discussed
above, the use of a current conveyor for both the switching
element and active computational element leads to the

CABs and the switching interconnects becoming
indistinguishable. The overall architecture becomes a
homogeneous mesh of logic with a minimum number of
switches introduced into the signal path. Various other
approaches have also been tried to minimise the number
of switches. Quan et al. proposed the use of local
interconnects. In their architecture, each CAB can be
connected to its eight neighbours and itself (Embabi
et al., 1996). This would seem to be a severe limitation on
the flexibility of this FPAA; however, they focus on the
large number of analog circuits with mostly local
interconnections (Quan et al., 1998). Pierzchala et al. (1995)
tried an even more limiting architecture in which no
electronic switches were included in the signal paths. While
these designs may provide benefits in bandwidth and
signal to noise ratio (SNR), they lack the flexibility and
generality needed in a truly general purpose FPAA.

Figure 3 A number of different interconnect schemes have
been used in FPAAs including (a) local connections;
(b) global connections; (c) cross bar networks and
(d) fat tree interconnects

In another design, Pierzchala et al. (1994) introduced an
interconnect scheme with both local and global signal
paths. This configuration provided local routing paths for
a cell’s four neighbours (north, south, east and west), as
well as connections to global busses that run horizontally,
vertically, and diagonally. This two tiered hierarchy
increases the routing flexibility within the FPAA. An even
more flexible interconnection network is the crossbar
switch (Ray et al., 2000). The crossbar switch offers a
nonblocking, fully connectable architecture; however, for a
large number of inputs and outputs its size can be too
big (O(N2) growth rate) (Lee and Gulak, 1991b). Lee and
Gulak (1991a) tried to solve this problem by using an
area-universal fat tree network. They used a hierarchical
fat tree network of small crossbar switches where the CABs
were connected as the leaves of the tree. In an additional
effort to minimise the size required by the switch networks,

184 T.S. Hall, C.M. Twigg, P. Hasler and D.V. Anderson

the number of connections was constrained
(Lee and Gulak, 1991b). Unfortunately, their prototype was
too small to really test this interconnect concept.

2.4 Application focus

A general purpose, commercially viable FPAA, similar to
commercial FPGAs, remains elusive. Many FPAA designs
have sacrificed size and generality in favour of better
performance for a constrained set of circuit designs. FPAAs
have been proposed for evolvable hardware (Keymeulen
et al., 2000; Santini et al., 2001; Stoica et al., 2001),
neural networks (Lee and Gulak, 1991a, 1991b),
signal conditioning (Klein, 1996), programmable filters
(Embabi et al., 1996; Quan et al., 1998), fuzzy logic
(Pierzchala et al., 1994), and high frequency applications
(Gaudet and Gulak, 1997). Others FPAA designs
have attempted to focus on a broader class of systems
including both linear and nonlinear elements (Bratt, 1998;
Ray et al., 2000). However, these efforts have failed to
produce a suitably generic, user friendly FPAA. In addition,
all of the FPAAs to date have been very small. The number
of CABs on a given device remains under 50 with many of
the devices having less than ten CABs. While several
companies currently sell FPAA devices, the market
remains relatively small, and no single device or
technology has received widespread acceptance.

3 The analog advantage

The future of FPAAs lies in their ability to speed the
implementation of advanced, low power signal processing
systems. Growing demand for complex information
processing on portable devices has motivated a lot of
contemporary research in the design of power efficient
signal processing systems. For analog systems to be
desirable to the largely digital signal processing
community, they need to provide a significant advantage in
terms of size and power and yet still remain relatively easy
to use and integrate into a larger digital system.

The primary benefit of implementing signal processing
systems in analog is the potential for large savings in power
consumption. For DSP microprocessors, Gene’s law
postulates that the power consumption, as measured in
Power/MMAC, is halved about every 18 months (Frantz,
2000). These advances largely follow Moore’s law, and they
are achieved by using decreased feature size and other
refinements, such as intelligent clock gating. Unfortunately,
a problem looms on the horizon; the power consumption of
the analog to digital converter (ADC) does not follow
Gene’s law and will soon dominate the total power budget
of digital systems. While ADC resolution has been
increasing at roughly 1.5 bits every five years, the power
performance has remained the same, and soon, physical
limits will further slow progress.

Most current signal processing systems that generate
digital output place the ADC as close to the analog
input signal as possible to take advantage of the
computational flexibility available in digital processors.
However, the development of large-scale FPAAs
and the CAD tools needed for their ease of use, would
allow engineers the option of performing some of the
computations in reconfigurable analog hardware prior to
the ADC, resulting in both a simpler ADC and a
substantially reduced computational load on the digital
processors that follow. Experimental data from analog
signal processing systems has shown that power
requirements can be decreased up to five orders of
magnitude over typical DSP microprocessor
implementations (Ellis et al., 2002; Smith et al., 2002b).
As illustrated in Figure 4, this corresponds to a 20 year
leap forward on the power curve predicted by Gene’s Law
(Hall et al., 2004b).

Figure 4 Data from Frantz (2000) showing the power
consumption trends in DSP microprocessors along with
data taken from a recent analog, floating-gate
integrated chip

Source: Ellis et al. (2002), Hasler et al.

(2002) and Smith et al. (2002b)

For analog systems to be desirable to the largely digital
signal processing community they not only need to have a
significant advantage in terms of size and power but they
must be relatively easy to use and easily integrated into a
larger digital system. In addition, they must be shown to be
accurately programmable and effective at implementing
many of the key systems found within digital signal
processing (DSP). As shown in Table 2, the functionality
desired for any technology focused on signal processing
includes monolithic filters, linear and nonlinear scalar
functions, vector-matrix operations (i.e., transforms,
distance metrics, winner take all, principle component
analysis, etc), linear phase filters, adaptation, and tap delay
lines for FIR systems.

 Developing large-scale field-programmable analog arrays for rapid prototyping 185

Table 2 Summary of signal processing functionality

Functionality DSP µP Trad. analog
Large – scale

FPAA
Programmable • – •
Monolithic filters o • •
Linear scalar • o •
Nonlinear scalar o • •
Vector-matrix o o •
Linear phase filters • – o
Adaptivity o – o
Tap delay lines • o o

– = No or very limited support
o = Possible
• = Efficient, well suited to technology.

Recent advances in analog floating gate technologies have
shown it to be a viable alternative to traditional FPAA
designs (Hall et al., 2002). As shown in Figure 4, analog
floating gate circuits have shown tremendous gains in
efficiency (a factor of as much as 10,000) compared with
custom digital approaches for the same applications, and
when used in the ADC, they result in more efficient biasing.

4 Floating gate technology in programmable
analog circuits

Previous FPAAs have suffered from their small size and
lack of functionality/generality. The next generation
FPAA needs to correct these problems in order to extend the
usefulness and acceptance of FPAAs. Ideally, one would
like a small, easily programmable element that can be
configured to act as an ideal switch, variable resistor, and
configurable computational element. While such a
device is indeed ideal, floating gate transistors do offer
some of these qualities. Previously, we have shown
that the floating gate transistor can be used as a (nonideal)
switch, variable resistor, and programmable element
within larger computational blocks (e.g., analog
multiplier, programmable filter, programmable OTAs, etc)
(Hall et al., 2002).

In addition, the small size of the floating gate structure
will allow larger, more functional FPAAs to be built, using
this technology. One example of the capability/area
improvement that can be achieved with floating gate
transistors is the programmable current mirror. Pankiewicz
et al. have presented one of the most recent FPAA designs.
Their FPAA is based on OTAs in which the current
mirrors on the differential outputs can be programmed.
They use a bank of current mirrors as shown in the
simplified form in Figure 5. Each current mirror requires 64

MOS transistors, 31 digitally controlled switches, and five
memory cells to hold the configuration of the switches.
The entire structure can be replaced with two programmable
floating gate transistors. The area savings in this case are
quite dramatic. Furthermore, the resolution of the bank of
current mirrors is set at five bits; whereas the floating gate
current mirror’s resolution can be varied based on the need
of a given application with a maximum resolution of
approximately ten bits (Sarpeshkar, 1997).

The floating gate transistors used in these FPAAs are
standard pFET devices whose gate terminals are not
connected to signals except through capacitors (e.g., no DC
path to a fixed potential) (Hasler et al., 1999). Figure 6
shows the layout, cross section, and circuit symbol for the
floating gate pFET device. Because the gate terminal is
well insulated from external signals, it can maintain a
permanent charge and thus it is an analog memory cell
similar to an EEPROM cell. With a floating gate, the
current through the pFET channel is dependent on
the charge of the floating gate node. By using hot electron
injection to decrease the charge on the floating gate node
and electron tunnelling to increase the charge on the
floating gate node, the current flow through the pFET
channel can be accurately controlled (Hasler et al., 1999;
Kucic et al., 2001a).

Figure 5 Layout, cross section, and circuit diagram of the
floating gate pFET in a standard double-poly, n-well
MOSIS process: The pFET transistor is the standard
pFET transistor in the n-well process. The gate input
capacitively couples to the floating gate by a capacitor.
Between Vtun and the floating gate is our symbol for a
tunneling junction – a capacitor with an added arrow
designating the charge flow

186 T.S. Hall, C.M. Twigg, P. Hasler and D.V. Anderson

Figure 6 Standard designs often achieve circuit programmability by embedding switchable arrays of elements (such as transistors or
capacitors) within the logic cells. Here, a conceptual version of Pankiewicz et al. (2002)’s programmable current mirror is
shown. In their case, 5 bits were used to set the switches. This requires 64 MOS transistors, 31 digitally controlled switches, and
five memory cells to hold the configuration of the switches. Using floating gate technology, this entire structure can be replaced
with two programmable floating gate transistors

4.1 Floating gate switches

Using a floating gate transistor as a switch requires
that the device be turned ‘on’ or turned ‘off’. Ideally, the
‘on’ state corresponds to the free flow of current through
the device or equivalently, zero impedance between
the source and the drain. Likewise, the ‘off’ state is
characterised by zero current flowing through the
device – an infinite impedance between the source
and the drain nodes. A floating gate transistor, however,
does not act as a perfect switch. The ‘on’ state is
characterised by an impedance greater than zero, and the
‘off’ state has an impedance less than infinity.
Therefore, the quality of a floating gate transistor as a
switch is determined by measuring the ‘on’ and ‘off’
impedances.

The floating gate switch network has been
characterised in Hall et al. (2004b). The switches were
found to exhibit similar characteristics to standard pFET
switches with an ‘on’ resistance as low as 11 kΩ and an ‘off’
resistance in the low gigaohm range. They have also been
shown to be accurately programmable and capable of
implementing a variable resistance. As shown in Figure 7,
the floating gate switch can be programmed in between the
‘on’ and ‘off’ extremes.

To increase the quality of a switch, the floating gate
transistors are programmed to the far extremes of their
range. In this case, one of the limiting factors is the ability
of the measurement equipment to measure the very
small currents present as the switch is programmed ‘off’.
To extend the viable programming range, current
measurements are taken at larger VDD’s as shown in
Figure 7. Measuring the currents with VDD = 65 V, allows
the I–V curves to be visible to the programming
infrastructure 1–V below the point visible when
VDD = 3.3 V.

Figure 7 Floating gate switches can be programmed within a
wide range. Here, examples of an ‘on’, ‘off’, and
midposition device are shown. To extend the effective
programming range of the device, large currents are
measured with VDD = 3.3 V and small currents are
measured with VDD = 6.5 V during programming

In the operating mode of this FPAA, the voltage on the gate
capacitor for all switches is the same. From Figure 7, it is
clear that the ‘off’ switches do not pose a problem, since
any gate voltage selected at or above 0.3 V should provide a
sufficiently high impedance. However, the ‘on’ switch
exhibits a decrease in quality as the gate voltage is increased
to VDD. Thus, an operating gate voltage of 0.3 V is deemed
optimal for the current programming scheme.

4.2 Switch as computational element

When used as a switch, the floating gate should be as
transparent a part of the circuit as possible. However,
Figure 7 shows that the floating gate transistor can be used

 Developing large-scale field-programmable analog arrays for rapid prototyping 187

as an in-circuit element (Kucic et al., 2001b; Hasler and
Minch, 2002). By adjusting the charge on the floating gate
node between the extremes used for ‘on’ and ‘off’, the
impedance of the switch can be varied over several orders of
magnitude. Thus, a variable linear resistor can be
synthesised by the floating gate switch.

Using the floating gate switches as in-circuit elements
allows for a very compact architecture. The physical area
needed for the CABs is reduced greatly, because resistors,
which consume relatively large amounts of space on CMOS
processes, are not needed as separate components. Also, by
reducing the number of individual circuit elements, signal
routing is simplified, while not losing functionality.

4.3 Floating gate transistors within computational
logic

Current FPAA designs rely on switches as the primary or
sole programmable element on the chip. Biases, multiplier
coefficients, resistances, and similar elements are set via
offchip components or with low resolution capacitor banks
or current mirror banks. Thus, the ability to modify or
program the actual analog computational logic is severely
limited. By using floating gate transistors within the
computational logic, however, circuit characteristics can be
directly modified.

In the FPAA explored here, floating gate transistors are
used within the computational analog blocks (CABs) to set
bias voltages for the OTAs (see Figure ll(a)), adjust the
corner frequencies on the capacitively coupled current
conveyors (C4s), and set multiplier coefficients in the
vector-matrix multipliers. In this manner, the floating gate
transistors allow the characteristics of the computational
elements to be programmed onchip while still maintaining a
compact CAB. Thus, by allowing both the switch networks
and the computational logic to be programmable, the
flexibility and usability of these FPAAs are greatly enhanced
over previous designs.

4.4 Programmability

By using floating gate devices as the only programmable
element on the chip, configuring the chip is greatly
simplified. Additionally, all of the floating gate transistors
are clustered together to aid in the programming logic and
signal routing. Decoders on the periphery of the circuit
are connected to the drain, source, and gate (through a
capacitor) terminals of the floating gate matrix. During
programming mode, these decoders allow each floating gate
transistor to be individually programmed using hot electron
injection (see Figure 8) (Kucic et al., 2001a).

Figure 8 By selectively setting the gate and drain voltages of the
columns and rows, a single floating gate transistor can
be programmed using hot electron injection without
affecting the neighbouring devices

Part of the previous work has been the development of a
systematic method for programming arrays of floating gate
transistors (Kucic et al., 2001a, 2001b; Smith et al., 2002a).
A microprocessor based board has been built to interface a
PC to these analog floating gate arrays for the purposes
of programming and testing. With a PC controlling the
programming of these devices, the details of using hot
electron injection and tunnelling to program individual
floating gate switches have been abstracted away from the
enduser. The programming algorithms have been optimised
for accuracy and speed, while giving the enduser an easy
to use interface for configuring arrays of floating gate
devices.

5 Large-scale FPAAs

As shown in Figure 9, traditional FPAAs resemble the early
PLDs in that they are focused on small systems such as
low order filtering, amplification and signal conditioning.
However, the class of large-scale FPAAs that we are
exploring in this paper are more analogous to modern
FPGAs in that they are much larger devices with the
functionality needed to implement high level system blocks
such as programmable high order filtering and Fourier
processing in addition to having a large number of medium
grain, programmable analog blocks (e.g., operational
transconductance amplifiers (OTAs), transistor elements,
capacitors, etc).

188 T.S. Hall, C.M. Twigg, P. Hasler and D.V. Anderson

Figure 9 (a) Digital PLDs can be used to implement small, carefully defined pieces of a complex system, while FPGAs can be used to
implement entire systems including processor datapaths, complex DSP functions, and more. Modern FPGAs can be 100–10,000
times larger and more complex than the PLDs of the 1970s and 1980s and (b) Analagously, traditional FPAAs resemble the
early PLDs in that they are focused on small systems such as low order filtering, amplification and signal conditioning.
However, the FPAAs based on the floating gate devices presented here are much larger devices with the functionality needed to
implement high level system blocks such as programmable high order filtering and Fourier processing in addition to having a
large number of programmable op-amp and transistor elements

(a) (b)

Large-scale FPAAs are possible using floating gate
technology. In the previous section, floating gate transistors
have been shown to be viable analog programmable
elements within the switch network and the computational
logic. This enhances the functionality and flexibility of the
FPAA while simplifying the programming infrastructure and
creating a very compact, scalable architecture.

In our large-scale FPAAs, the computational logic is
organised in a compact computational analog block (CAB)

providing a naturally scalable architecture. CABs
are tiled across the chip in a regular mesh
type architecture with global busses and local
interconnects inbetween as shown in Figure 10(a).
Early designs typically have 50–100 CABs on a
single chip and often consume 9–36 mm2 in the
TSMC 0.35 micron CMOS process as the size of the switch
networks and number and complexity of the CABs is
varied.

Figure 10 (a) This is the overall block diagram for a large-scale FPAA. The switching interconnects are fully connectable crossbar
networks built using floating gate transistors and (b) This is a Computational Analog Block (CAB) for an FPAA based on
floating gate devices. Here, each CAB contains a four by four matrix multiplier, three widerange operational transconductance
amplifiers (OTAs), three fixed value capacitors, a capcatively coupled current conveyor (C4), a peak detector, and two FET
transistors. The input and output signals shown in this figure are routed to the rows of the switch matrix

 Developing large-scale field-programmable analog arrays for rapid prototyping 189

5.1 Computational analog blocks

Many example CABs can be imagined using this
technology. Figure 10(b) shows one example CAB, whose
functionality is enhanced by a mixture of medium and
coarse grain computational blocks similar to many modern
FPGA designs. The computational blocks were carefully
selected to provide a sufficiently flexible, generic
architecture while optimising certain frequently used signal
processing blocks. For generality, three operational
transconductance amplifiers (OTAs) are included in each
CAB. OTAs have already been shown to be effective at
implementing a large class of systems including
amplification, integration, filtering, multiplication,
exponentiation, modulation, and other linear and nonlinear
functions (Ray et al., 2000; Pankiewicz et al., 2002;
Sanchez-Sinencio et al., 1989; Totally Re-configurable
Analog Circuit – TRAC Datasheet, 1999). In addition, the
two FET devices provide the ability to perform logarithmic
and exponential functions as well as convert back and forth
between current and voltage. The three capacitors are fixed
in value to minimise the size of the CAB and are primarily
used on the outputs of the OTAs; however, they will be
available for any purpose. The variable capacitor and/or
current mirror banks found in some designs are not needed
here, because the use of floating gate transistors in the
OTAs will give the user sufficient control in programming
the transconductance of the amplifiers (Hall et al., 2004b;
Pankiewicz et al., 2002). Eliminating the capacitor banks
creates a large savings in the area required for each CAB.

The high-level computational blocks used in this design
are a capacitively coupled current conveyor (C4) used as a
bandpass filter module and the 4 × 4 vector-matrix multiplier
block. In general, the C4 module provides a straightforward
method of subbanding an incoming signal. This allows
Fourier analysis analagous to performing a Fast Fourier
Transform (FFT) in the digital domain. The vector-matrix
multiplier block allows the user to perform a matrix
transformation on the incoming signals. Together these
blocks can be used like a Fourier processor (Hasler
et al., 2001; Kucic et al., 2001a),. In addition, a peak
detector is added to each CAB.

5.2 Testbed FPAA

The testbed FPAA based on floating gate devices was
fabricated in a 0.5 micron, standard CMOS process. This
FPAA contains two CABs with a 64 × 16 floating
gate crossbar switch network connecting them (Hall
et al., 2002). The CAB design was slightly smaller than the
one outlined in Section 3 having a C4 bandpass filter
module, 4 × 4 vector-matrix multiplier, and three wide
range OTAs. However, this design is more than sufficient
to test the concept of FPAAs with floating gate devices and
characterise the elements of the CAB.

As an initial example of the testbed system, a first order
filter is implemented using an OTA in one of the CABs.
Figure 11 shows how the circuit is mapped onto the FPAA
using five floating gate switches. Once the switch network

is configured, the biasing floating gate transistor is
programmed to vary the corner frequency of this first order
filter. The frequency response is shown for several
programmed corner frequencies in Figure 12. The
moderate gain in the lower frequencies is due to
the switches in the feedback loop of the OTA. Ideally, the
output node and the negative input node would be directly
connected. However, in the FPAA, this path must be routed
via the switch network, which means that a minimum of two
floating gate switches will be in the feedback loop. The gain
can be minimised by injecting the floating gates of these
switches to a lower charge, or if gain is desired for a given
application, then it can be set by programming these
switches to a higher charge.

Figure 11 (a) The source-follower is configured by programming
the floating gate charge on the floating gate device.
(The other half of the current mirror is internal to the
wide-range OTA.) Thus, the effective conductance can
be modified for each of the OTAs on chip and (b)
Using the switch matrix, an OTA located in one of the
Computational Analog Blocks (CABs) is connected in
a source-follower configuration, and two external pins
are routed to the OTA as the input and output signals.
The programmable biases illustrated in (a) are not
shown here for simplicity, but each OTA has a current
mirror and floating-gate current source that sets its bias

Figure 12 The frequency response of the source-follower circuit
is shown for several bias currents. An internal floating
gate transistor is used as a current source to set the
OTA’s bias and thus the bandwidth of this first order
filter

190 T.S. Hall, C.M. Twigg, P. Hasler and D.V. Anderson

In Figure 13, a second order section filter is shown along
side the FPAA implementation. Once again, explicit
capacitors are eliminated since the switch parasitics provide
the necessary capacitance. Using the floating gate
programmable biases, the two OTAs in a source-follower
configuration were biased to the same level and the third
OTA’s bias current was increased to adjust the Q peak of
the system. The frequency response for this circuit is
shown in Figure 14. As expected, the Q peak increases as
the bias current (e.g., conductance) increases.

Figure 13 (a) a second order section filter can be implemented
with two OTAs in a source-follower configuration and
a third OTA that creates positive feedback and (b)
using the switch matrix, three OTAs within the CABs
are connected in a second order section configuration

Figure 14 The experimental frequency response of a second
order section filter is shown here. The Q parameter is
adjusted by increasing the bias current of the positive
feedback amplifier via a floating gate current source.

For second order functions such as the second order section
and diff2 circuit, reasonable Q peaks and filter bandwidths
require small bias currents (in the picoamp to femtoamp
range). While the floating gate transistors can set bias
currents this low, the constraint becomes the ability to

accurately measure these currents while programming the
floating gate transistors. Experimental results from Figure 7
show a measurement threshold of 1 pA using present
measurement techniques. An important consideration
here is the relative sizing of the transistors that
set the bias currents. The floating gate transistor shown in
Figure 11(a) sets the current through the nMOS current
mirror (the other half of the current mirror is internal to the
OTA module). To set small bias currents, it is preferable to
have the nFET and floating gate transistor sized larger than
the current mirror nFET internal to the OTA. In this
configuration, the current mirror functions as a current
divider, and thus, very low bias currents can be set by
programming the floating gate transistor to generate currents
in the picoamp range.

Based on these testbed systems, one can start to imagine
a wide class of systems that can be implemented and
configured on FPAAs with many of these CABs on
them. In particular, differentiators, cascaded second order
sections, bandpass filters, matrix transforms (including
DCTs and wavelet transforms), and frequency
decomposition are all well suited for this architecture.
In the audio arena alone, designs could be prototyped to
implement forms of noise suppression, audio enhancement,
feature extraction, auditory modelling, and simple audio
array processing. Other potential interest areas
include communications signal conditioning (modulation,
mixing, etc), transform coding, and neural networks
(with external training). Most of these systems rely on
efficient subband processing; so, each CAB has been
designed with a C4 bandpass to optimise this operation.
As shown in Figure 15, the centre frequency of the C4 filter
can be moved over a large range of frequencies.

Figure 15 Frequency decomposition (subband processing) can be
achieved on the test bed FPAA by using the C4
bandpass filter block in each CAB. In this simulation
of the FPAA, the centre frequency of the C4 is shown
to be programmable over a wide range of frequencies

 Developing large-scale field-programmable analog arrays for rapid prototyping 191

6 Conclusion

Large-scale FPAAs based on floating gate technologies
provide the necessary levels of programmability and
functionality to implement complex signal processing
systems. With orders of magnitude power consumption
savings over traditional digital approaches, this
reconfigurable analog technology offers an attractive
alternative for implementing advanced signal processing
systems in low power, embedded devices. A testbed FPAA
based on floating gate circuits has been built and initial
results have been shown.

References
Adams, W.J., Nedungadi, A. and Geiger, R.L. (1989) ‘Design of

a programmable OTA with multi-decade transconductance
adjustment’, Proceedings of the International Symposium on
Circuits and Systems, Vol. 1, May, pp.663–666.

Anadigm Company Fact Sheet (2005) HTML Page, Anadigm,
http://www.anadigm.com/Prs_15.asp/, September, p.1.

Anadigm FPAA Family Overview (2005) PDF File, Anadigm,
http://www.anadigm.com/Supp_06.asp?tab=lit, September.

Anderson, D., Marcjan, C., Bersch, D., Anderson, H., Hu, P.,
Palusinski, O., Gettman, D., Macbeth, I. and Bratt, A. (1997)
‘A field programmable analog array and its application’,
Proc. IEEE Custom Integrated Circuits Conference, May,
pp.555–558.

Birkner, J.M. and Chua, H-T. (1978) Programmable Array
Logic Circuit, US Patent No. 4, pp.1–24.

Bratt, A. (1998) ‘Motorola field programmable analogue arrays,
present hardware and future trends’, IEE Half – day Colloquium
on Evolvable Hardware Systems, March, pp.1/1–1/5.

Chang, S., Hayes-Gill, B. and Paul, C. (1996) ‘Multi-function
block for a switched current field programmable analog
array’, 1996 Midwest Symposium on Circuits and Systems,
August, pp.158–161.

Chow, P., Seo, S.O., Rose, J., Chung, K., Paez-Monzon, G. and
Rahardja, I. (1999) ‘The design of an SRAM-based
field-programmable gate array – part I: architecture’, IEEE
Transactions on Very Large Scale Integration (VLSI) Systems,
Vol. 7, No. 2, June, pp.191–197.

Edwards, R.T., Strohbehn, K. and Jaskulek, S.E. (2000)
‘A field-programmable mixed-signal array architecture using
antifuse interconnects’, Proceedings of the International
Symposium on Circuits and Systems, Vol. 3, May, pp.319–322.

Ellis, R., Yoo, H., Graham, D., Hasler, P. and Anderson, D. (2002)
‘A continuous-time speech enhancement from-end for
microphone inputs’, Proceedings of the IEEE International
Symposium on Circuits and Systems, Phoenix, AZ, Vol. 2,
pp.II.728–II.731.

Embabi, S., Quan, X., Oki, N., Manjrekar, A. and
Sanchez-Sinencio, E. (1996) ‘A field programmable analog
signal processing array’, IEEE 39th Midwest Symposium on
Circuits and Systems, Vol. 1, August, pp.151–154.

Frantz, G. (2000) ‘Digital signal processor trends’, IEEE Micro,
Vol. 20, No. 6, November–December, pp.52–59.

Ganesan, S. and Vemuri, R. (2001) ‘Behavioral partitioning in the
synthesis of mixed analog-digital systems’, Proc. Design
Automation Conference, June, pp.133–138.

Gaudet, V.C. and Gulak, P.G. (1997) ‘CMOS implementation
of a current conveyor-based field-programmable analog
array’, Conference Record of the 31st Asilomar Conference
on Signals, Systems and Computers, Vol. 2, November,
pp.1156–1159.

Gulak, P.G. (1995) ‘Field-programmable analog arrays: past,
present and future perspectives’, IEEE Region 10th
International Conference on Microelectronics and VLSI,
November, pp.123–126.

Hall, T.S., Hasler, P. and Anderson, D.V. (2002)
‘Field-programmable analog arrays: a floating-gate
approach’, Proc. 12th International Conference on Field
Programmable Logic and Applications, Montpellier, France,
September, pp.424–433.

Hall, T.S., Twigg, C.M., Hasler, P. and Anderson, D.V. (2004a)
‘Developing large-scale field-programmable analog arrays’,
Proc. 18th International Parallel and Distributed Processing
Symposium, Santa Fe, New Mexico, April, p.6.

Hall, T.S., Twigg, C.M., Hasler, P. and Anderson, D.V. (2004b)
‘Application performance of elements in a floating-gate
FPAA’, Proceedings of the International Symposium on
Circuits and Systems, May, pp.II.589–II.592.

Hasler, P. and Minch, B.A. (2002) Floating-gate Devices, Circuits,
and Systems, in press.

Hasler, P., Minch, B.A. and Diorio, C. (1999) ‘Adaptive circuits
using PFET floating-gate devices’, Proceedings of the 20th
Anniversary Conference on Advanced Research in VLSI,
Atlanta, GA, March, pp.215–229.

Hasler, P., Minch, B.A. and Diorio, C. (2001) ‘An autozeroing
floating-gate amplifier’, IEEE Transactions on Circuits and
Systems II, Vol. 48, No. 1, January, pp.74–82.

Hasler, P., Smith, P., Ellis, R., Graham, D. and Anderson, D.V.
(2002) ‘Biologically inspired auditory sensing system
interfaces on a chip’, 2002 IEEE Sensors Conference,
Orlando, FL, June, pp.669–674, invited Paper.

ispPAC Overview (2001) PDF File, Lattice Semiconductor
Corporation, http://www.latticesemi.com/, August, pp.1–3.

Keymeulen, D., Zebulum, R.S., Jin, Y. and Stoica, A. (2000)
‘Fault-tolerant evolvable hardware using field-programmable
transistor arrays’, IEEE Transactions on Reliability, Vol. 49,
No. 3, September, pp.305–316.

Klein, H.W. (1996) ‘The EPAC architecture: an expert cell
approach to field programmable analog circuits’, IEEE 39th
Midwest Symposium on Circuits and Systems, Vol. 1,
August, pp.169–172.

Koneru, S., Lee, E.K.F. and Chu, C. (1999) ‘A flexible 2-d
switched-capacitor FPAA architecture and its mapping
algorithm’, 42nd Midwest Symposium on Circuits and
Systems, Vol. 1, August, pp.296–299.

Kucic, M., Low, A., Hasler, P. and Neff, J. (2001a)
‘A programmable continuous-time floating-gate fourier
processor’, IEEE Transactions on Circuits and Systems II,
Vol. 48, No. 1, January, pp.90–99.

Kucic, M., Hasler, P., Dugger, J. and Anderson, D.V. (2001b)
‘Programmable and adaptive analog filters using arrays of
floating-gate circuits’, in Brunvand, E. and Myers, C. (Eds.):
2001 Conference on Advanced Research in VLSI, IEEE
Computer Society, March, pp.148–162.

Kutuk, H. and Kang, S-M. (1996) ‘A field-programmable analog
array (FPAA) using switched-capacitor techniques’,
Proceedings of the International Symposium on Circuits and
Systems, Vol. 4, May, pp.41–44.

192 T.S. Hall, C.M. Twigg, P. Hasler and D.V. Anderson

Lee, E.K.F. (1995) Field-programmable Analog Arrays on MOS
Transconductors, PhD Dissertation, University of Toronto,
p.182.

Lee, K. and Gulak, P. (1991a) ‘A CMOS field-programmable
analog array’, IEEE International Solid – State Conference
Digest of Technical Papers, February, pp.186–188.

Lee, E.K.F. and Gulak, P.G. (1991b) ‘A CMOS
field-programmable analog array’, IEEE Journal of Solid-State
Circuits, Vol. 26, No. 12, February, pp.1860–1867.

Lee, K. and Gulak, P. (1995) ‘A transconductor-based
field-programmable analog array’, IEEE International
Solid – State Conference Digest of Technical Papers, February,
pp.198–199.

Looby, C.A. and Lyden, C. (1997) ‘A CMOS continuous-time
field programmable analog array’, Proc. 5th International
ACM Symposium on Field – Programmable Gate Arrays,
ACM Press, pp.137–141.

Marsh, D. (2001) ‘Programmable analogue ICs challenge
spice-and-breadboard designs’, EDN Europe, http://
www.ednmag.com: Reed Business Information, October,
pp.30–36.

Pankiewicz, A., Wojcikowski, M., Szczepanski, S. and
Sun, Y. (2001) ‘A CMOS field programmable analog array
and its application in continuous-time OTA-C filter design’,
Proceedings of the International Symposium on Circuits and
Systems, Vol. 1, May, pp.5–8.

Pankiewicz, B., Wojcikowski, M., Szczepanski, S. and Sun, Y.
(2002) ‘A field programmable analog array for cmos
continuous-time OTA-C filter applications’, IEEE Journal of
Solid-State Circuits, Vol. 37, No. 2, February, pp.125–136.

Pierzchala, E., Perkowski, M.A. and Grygiel, S. (1994)
‘A field programmable analog array for continuous, fuzzy, and
multi-valued logic applications’, 24th International Symposium
on Multiple – Valued Logic, May, pp.148–155.

Pierzchala, E., Perkowski, M.A., Halen, P.V. and Schaumann, R.
(1995) ‘Current-mode amplifier/integrator for a
field-programmable analog array’, IEEE International
Solid–State Conference Digest of Technical Papers, February,
pp.196–197.

Premont, C., Grisel, R., Abouchi, N. and Chante, J-P. (1996)
‘Current-conveyor based field programmable analog array’,
IEEE 39th Midwest Symposium on Circuits and Systems,
Vol. 1, August, pp.155–157.

Quan, X., Embabi, S. and Sanchez-Sinencio, E. (1998)
‘A current-mode based field programmable analog array
architecture for signal processing applications’, IEEE 1998
Custom Integrated Circuits Conference, Santa Clara, CA,
May, pp.277–280.

Ray, A., Chaudhuri, P.P. and Nandi, P.K. (2000) ‘Design of OTA
based field programmable analog array’, Proc. 13th International
Conference on VLSI Design, January, pp.494–498.

Sanchez-Sinencio, E., Ramirez-Angulo, J., Linares-Barranco,
B. and Rodriguez-Vazquez, A. (1989) ‘Ota-based non-linear
function approximations’, Proceedings of the International
Symposium on Circuits and Systems, Vol. 1, May, pp.96–99.

Santini, C.C., Zebulum, R., Pacheco, M.A.C., Vellasco, M.M.R.
and Szwarcman, M.H. (2001) ‘Evolution of analog circuits on
a programmable analog multiplexer array’, Proc. IEEE
Aerospace Conference, Vol. 5, March, pp.2301–2308.

Sarpeshkar, R. (1997) Efficient Precise Computation with Noisy
Components: Extrapolating from an Electronic Cochlea to the
Brain, PhD Thesis, California Institute of Technology,
Pasadena, CA, p.234.

Sivilotti, M.A. (1991) Wiring Considerations in Analog VLSI
Systems, with Application to Field-programmable Networks
(VLSI), PhD Dissertation, California Institute of Technology,
Pasadena, CA, p.210.

Smith, P., Kucic, M. and Hasler, P. (2002a) ‘Accurate programming
of analog floating-gate arrays’, Proceedings of the
International Symposium on Circuits and Systems, Phoenix,
AZ, May, Vol. 5, pp.V.489–V.492.

Smith, P.D., Kucic, M., Ellis, R., Hasler, P. and
Anderson, D.V. (2002b) ‘Mel–frequency cepstrum encoding
in analog floating–gate circuitry’, in Proceedings of the
International Symposium on Circuits and Systems, Phoenix,
AZ, May, Vol. 4, pp.IV671–IV674.

Stoica, A., Zebulum, R., Keymeulen, D., Tawel, R.,
Daud, T. and Thakoor, A. (2001) ‘Reconfigurable VLSI
architectures for evolvable hardware: from experimental field
programmable transistor arrays to evolution-oriented chips’,
IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, Vol. 9, No. 1, February, pp.227–232.

Totally Re-configurable Analog Circuit – TRAC Datasheet (1999)
PDF File, Zetex Semiconductors, http://www.zetex.com,
March.

Wakerly, J.F. (1999) Digital Design: Principles and Practices,
3rd ed., Chapter 5, Combinational logic design practices,
New Jersey, Prentice-Hall, pp.311–455.

	Southern Adventist University
	KnowledgeExchange@Southern
	2005

	Developing large-scale field-programmable analog arrays for rapid prototyping
	Tyson S. Hall
	Christopher M. Twigg
	Paul Hasler
	David V. Anderson
	Recommended Citation

	IJES Title Page

