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Abstract: Field-programmable analog arrays (FPAAs) provide a method for rapidly prototyping 
analog systems. While currently available FPAAs vary in architecture and interconnect design, 
they are often limited in size and flexibility. For FPAAs to be as useful and marketable as modern 
digital reconfigurable devices, new technologies must be explored to provide area efficient, 
accurately programmable analog circuitry that can be easily integrated into a larger digital/mixed 
signal system. By leveraging recent advances in floating gate transistors, a new generation of 
FPAAs are achievable that will dramatically advance the current state of the art in terms of size, 
functionality, and flexibility. 
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1 Rapid-prototyping analog systems 

The process of designing, fabricating, and testing an analog 
chip requires a certain level of expertise and is often long and 
expensive. As shown in Figure 1, the process is not unlike 
designing digital ASICs (application specific integrated 
circuits), except that there are fewer tools and libraries 
available to the designer. The traditional analog design cycle 

often requires several iterations of the fabrication process, 
which with the simulation, VLSI layout, and testing 
phases can easily consume a year or more for typical IC 
designs. However, an FPAA dramatically reduces the 
design cycle by removing the fabrication stage from  
the iterative process. Thus, many designs may be tested and 
modified within a single day. 

Figure 1 This figure illustrates the advantages of designing analog ICs using an FPAA based rapid prototyping technology as opposed 
to the traditional design cycle of VLSI layout and fabrication. The traditional analog design cycle often requires 3 or more 
iterations of the fabrication process which extends the development process to over a year. With an FPAA based system, designs 
can be synthesised, tested and modified 20 or more times within a matter of days, instead of years 

 
 
Programmable analog devices have benefits and design 
similar to FPGAs. Like FPGAs, the analog arrays,  
dubbed field programmable analog arrays (FPAAs), are 
not optimal for all solutions. They are, however, very  
useful for many situations and a solution can be found for 
many problems not requiring tight specifications.  
Relative to custom designed analog circuits, a design 
implemented on an FPAA results in higher parasitics as 
well as increased die area for a given design; therefore, 
the design always possesses some inefficiencies (measured 
in lower bandwidth and higher consumed power). On the 
other hand, analog circuit design is often time consuming 
and these adverse tradeoffs are well balanced by decreased 
time to market. 

FPAAs have been of interest for some time, but 
historically, these devices have had very few programmable 
elements and limited interconnect capabilities, making them 
limited in their usefulness and versatility. Currently 
available commercial and academic FPAAs are typically 
based on op-amp circuits with only relatively few op-amps 
per chip (Sivilotti, 1991; Lee and Gulak, 1995, 1991a; 
Chang et al., 1996; Anderson et al., 1997; ispPAC 
Overview, 2001; Quan et al., 1998; Totally Reconfigurable 
Analog Circuit – TRAC, 1999; Looby and Lyden, 1997).  
By building larger, more flexible FPAAs, reconfigurable 
analog devices will become more analogous to today’s high 
density FPGA architectures. This will allow a very useful 
rapid prototyping system to be built for analog circuit 
 
 

development. Furthermore, an integrated, rapid prototyping 
system can be built with an FPAA and an FPGA on board 
that will allow engineers to prototype analog, digital and 
mixed signal systems, all on one station. 

The FPAA explored in this paper leverages the recent 
advances in floating gate technology to provide 
computational logic that is programmable within a compact, 
scalable architecture (Hall et al., 2002, 2004a). The 
computational logic includes a mix of coarse, medium, and 
fine grain blocks to provide a balance between flexibility 
and performance. In addition, floating gate transistors are 
used to set the biases, coefficients and other parameters of 
the computational analog blocks so that the analog elements 
are highly configurable, unlike most traditional designs. 
Floating gate transistors are also used as the switches. 

This provides a very compact switch that can be 
programmed ‘on’, ‘off’, or as an in-circuit resistive element. 
The ability to use the switches as in-circuit elements results 
in both greater flexibility and a smaller area than 
traditional designs. 

This paper proceeds with an overview of the past FPAA 
work in Section 2. In Section 3 the power savings 
demonstrated in analog circuits will be discussed and in 
Section 4, a brief overview of the advances of floating gate 
technologies will be presented. In Section 5, a new 
architecture is presented for large-scale FPAAs, including 
experimental data from a testbed FPAA fabricated with this 
new architecture. 
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2 Overview of past and present FPAAs 

Reconfigurable hardware has long been of interest to circuit 
designers and engineers. In the digital domain, 
programmable logic devices (PLDs) have made a large 
impact on the development of custom digital chips by 
enabling a designer to try custom designs on easily 
reconfigurable hardware. Since their conception in the late 
1960s and early 1970s, PLDs have evolved into today’s 
high density field programmable gate arrays (FPGAs) 
(Wakerly, 1999; Birkner and Chua, 1978; Chow  
et al., 1999). Modern FPGAs are widely used in the 
laboratory for rapidly prototyping digital hardware, as well 
as in production goods to decrease time to market and to 
allow products to be easily upgraded after being deployed. 

In the analog domain, however, progress has been much 
slower. While early analog integrated circuits (ICs) were 
often tuneable with adjustable biases, truly reconfigurable 
analog circuitry in the form of field programmable  
analog arrays (FPAAs) did not emerge until the late 1980s 
(Sivilotti, 1991; Gulak, 1995), and commercial offerings did 
not reach the market until 1996 (Marsh, 2001). 

Field programmable analog arrays (FPAAs) can be 
broadly classified into two categories: continuous time 
devices and discrete time devices (Ganesan and Vemuri, 
2001). There are academic and commercial examples of 
both categories as well as advantages unique to each design 
methodology. In addition, previous FPAAs have varied 
greatly in terms of computational granularity and capability, 
interconnect structure, performance, and application focus. 

2.1 Discrete time FPAAs 

Discrete time FPAAs are typically switched-capacitor 
designs. For these circuits, the incoming voltage is 
sampled by opening and closing a switch that connects the 
input to an initial capacitor as shown in Figure 2. The 
switch and capacitor form a type of analog register and  
the system’s signal path is partitioned by these registers. 
The basic computational elements are usually operational  
amplifiers and analog registers, which synthesise a linear 
resistor whose value is determined by the switching rate and 
capacitor value. The synthesis of linear variable resistors 
gives switched-capacitor FPAAs greater flexibility than 
traditional continuous time FPAAs; however, they can also 
be harder to design well, because the switches and 
capacitors can introduce noise and nonlinearities into the 
system that must be overcome (Marsh, 2001). In addition, 
these designs have a limited bandwidth based on the 
sampling rate, are complicated by the need for continuous 
time antialiasing and reconstruction filters at the input and 
output, and can be large if programmable capacitor arrays 
are included (Gulak, 1995; Marsh, 2001). 

In the late 1990s, several switched-capacitor FPAAs 
were introduced by both academic and commercial entities. 
In the academic arena, basic computational elements vary 
from the simple operational amplifier (Koneru et al., 1999; 
Edwards et al., 2000) to more complex blocks such as a 
lossless integrator and lossy integrator connected in a loop  

(Kutuk and Kang, 1996). These devices also can have 
programmable capacitor and/or programmable resistor 
arrays to add programmability (Edwards et al., 2000; 
Gulak, 1995). In the commercial arena, Motorola was 
one of the first companies to bring a general purpose 
FPAA to market with their MPAA020 and MPA1000 
series (Bratt, 1998; Anderson et al., 1997; Marsh, 2001); 
however, since then, a spinoff company named  
Anadigm has marketed these switched-capacitor FPAAs  
(Anadigm Company Fact Sheet, 2005). The newest Anadigm  
devices have Computational Analog Blocks (CABs) with 
two differential operational amplifiers, programmable 
capacitor banks, a successive approximation register (for 
implementing an A/D converter), and a highspeed 
comparator (Anadigm FPAA Family Overview, 2005). 
However, even the latest devices are relatively limited, 
with only four CABs per chip and are targeted at basic 
signal conditioning and filtering applications. 

Switched-capacitor designs are not the only discrete 
time FPAAs. Switched-current circuits can be used to 
build a FPAA. The advantages of this technique include not 
requiring operational amplifiers, capability of being 
fabricated on standard digital CMOS processes, and 
elimination of distortion on the signals due to parasitic 
resistances; however, these designs can produce less 
accuracy than switched-capacitor circuits, and since the 
signals are all currents, a given output stage can only drive 
one input stage (Chang et al., 1996). 

Figure 2 Most discrete time FPAAs use switched-capacitor 
designs. The programmability within switched-
capacitor designs is usually achieved using an array of 
capacitors as shown. The effective capacitance at each 
switch can be varied by setting the n digital memory 
cells controlling switches S1 to Sn. In essence, this 
amounts to a Digital-to-Analog Converter (DAC) being 
included in each computational block 

 

2.2 Continuous time FPAAs 
Continuous time FPAAs typically use an array of fixed 
components (often operational amplifiers and/or transistors) 
that are interconnected by a switching matrix.  
The switches are usually controlled by digital registers, 
which can be loaded by an external controller, thus 
allowing the FPAA to be configured to implement a 
number of different designs. This type of FPAA is 
advantageous because potential sampling artefacts are 
avoided; antialiasing filters are not needed; common, 
relatively easy design processes can be used (e.g., standard 
CMOS processes); and large signal bandwidths can be 
supported with predictable performance (Marsh, 2001). 
However, the switching networks introduce parasitics into 
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the signal path that can limit the bandwidth and add noise 
to the system. Some of the literature has focused on 
minimising the number of switches in the signal path of 
the FPAA (Pierzchala et al., 1995; Embabi et al., 1996;  
Lee and Gulak, 1991a, 1991b). 

The granularity of the computational logic that forms the 
basis of the FPAA’s design is an important design 
characteristic. The computational logic is usually arranged 
within a Computational Analog Block (CAB) on the FPAA, 
and then the CABs are dispersed across the FPAA with some 
form of an interconnect network tying them together. As 
summarised in Table 1, the finest grain architectures 
typically use transistors as the core computational cell. 
While these designs offer the most flexibility and 
generality, synthesising a sufficiently complex system  
 

requires a large number of transistors to be wired 
together. Thus, a large number of switches are introduced 
into the signal path. The switch parasitics and finite 
resistance increases the noise within the system and  
limits the performance/bandwidth (Pierzchala et al., 1995; 
Embabi et al., 1996; Klein, 1996). Fine grain FPAAs have 
primarily been relegated to research in evolvable hardware 
(Keymeulen et al., 2000; Santini et al., 2001; Stoica  
et al., 2001), where the lowest level building blocks are 
desirable for generating unique designs using nontraditional 
design methodologies. Systems that are designed using 
genetic algorithms are not as negatively affected by the 
parasitics and nonideal resistances of switches, since 
these parameters are taken into account and even exploited 
throughout the evolutionary design process. 

Table 1 Summary of FPAA Granularity: The granularity of the computational logic used in an FPAA impacts the size, performance, 
flexibility, and functionality of the device 

 Typical computational elements Advantages Disadvantages Primary applications 

Fine Transistors Small  
Simple CAB design  
Generic building blocks 

Large no. of switches  
Large parasitics 

Evolvable hardware 

Medium Op-amp  
OTA  
Current conveyor 

Semi-generic building blocks  
Moderate CAB design  
Large variety of CAB/interconnect 
designs 

Limited size  
Severe 
functionality/performance 
tradeoff 

Filters  
Amplifiers  
Signal conditioning  
Low level  
Signal processing 

Coarse Fourier processor  
‘Expert cell’ 

Higher performance  
Easier user interface 

Limited flexibility  
Limited functionality 

Filters  
Signal conditioning 

 
On the coarse grain extreme, one finds FPAAs such as 
IMP’s EPAC™devices, which contain an ‘expert cell’ as the 
core computational block (Klein, 1996). For the IMP50E10 
device, this cell is a very high level block with limited 
interconnects that is aimed directly at signal conditioning 
applications. The logic within the cell can be configured to 
function as an amplifier with an optional low pass filter or 
as a comparator with optional hysteresis. There is also a 
dedicated D/A converter for defining the reference point for 
the comparator. These coarse grain designs sacrifice 
flexibility and generality in favour of increased, more 
predictable performance (Klein, 1996). 

The majority of FPAAs fall in between these two 
extremes. A number of FPAAs use an operational 
transconductance amplifier (OTA) as the basic 
computational element (Ray et al., 2000; Pankiewicz  
et al., 2001, 2002; Sanchez-Sinencio et al., 1989; Totally 
Re-configurable Analog Circuit – TRAC®, 1999; Pierzchala 
et al., 1995). OTAs work well as the basic building block 
because their transconductance can be programmed either 
by varying the analog bias voltage or by changing the gain 
of the output current mirrors (Adams et al., 1989; 
Pankiewicz et al., 2002). In addition, it has been shown that 
OTAs can implement a wide range of linear and nonlinear 
circuits. Several FPAA designs have focused on 
synthesising linear circuits and use OTAs to implement 

amplification, integration, and filtering functions 
(Pankiewicz et al., 2001, 2002; Pierzchala et al., 1995).  
Ray et al. (2000) has proposed a more generalised 
scheme in which linear circuits are synthesised using an 
OTA based lossless integrator and an OTA based lossy 
integrator as the basic functional blocks. He also uses an 
OTA based multiplier and OTA based integrator as the 
basic functional block for synthesising nonlinear circuits 
such as amplitude and frequency modulation.  
Sanchez-Sinencio et al. (1989) have used OTAs to implement 
nonlinear functions such as multiplication, division, square 
root, exponentiation, and piecewise linear operations. 

Similarly, several FPAA designs have been proposed 
using a current conveyor structure as the basic building 
block. Current conveyors are similar to OTAs; however, 
when used as an amplifier they exhibit a constant bandwidth 
that is independent of gain. They also do not require 
compensation circuitry to insure stability and thus they can 
operate at higher frequencies (Gaudet and Gulak, 1997). 
Gaudet and Gulak (1997) have proposed a current conveyor 
based FPAA in which each CAB contains a second 
generation current conveyor, two programmable capacitors, 
and two programmable resistors (transconductors).  
This CAB is shown to implement amplification and first 
order filtering functions as well as log and antilog 
functions with the addition of switchable diodes. Premont  
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et al. (1996) also describe an FPAA based on current 
conveyors. Their core cell includes tuneable resistors and a 
current conveyor. It is demonstrated that this cell can be 
configured to implement a tuneable capacitor, and thus is 
suitable for amplification and filtering functions. 

Other medium grain computational blocks have been 
used in FPAAs as well. Pierzchala et al. (2001) used an 
OTA based amplifier/integrator cell that does not require 
switches in the signal path. Quan et al. (1998) proposed  
a current mode FPAA that uses a cascode current-mode 
integrator as the basic building block. This core cell can 
implement amplification, integration, and attenuation  
with a minimum number of switches in the signal path 
(Embabi et al., 1996). 

2.3 Interconnect structure 

Aside from CAB components, a number of different 
interconnect structures have also been proposed for 
FPAAs. The most common method of interconnect switch 
is a MOS transistor controlled by a digital memory (Lee and 
Gulak, 1991b; Pankiewicz et al., 2002; Quan et al., 1998; 
Anderson et al., 1997; Chang et al., 1996; Gaudet and 
Gulak, 1997). Unfortunately, switch resistance in these 
devices can be high and can vary dramatically, based 
on the DC bias of the signal making them a limiting 
factor in designing large, complex FPAAs (Edwards  
et al., 2000). Lee and Gulak used this type of pass 
transistor switch in Lee and Gulak (1991a, 1991b); 
however, the parasitic effects of these switches greatly 
limited the performance and capability of their FPAA 
(Lee and Gulak, 1995). So, they replaced the pass 
transistors with four transistor transconductors, which 
increased the performance and functionality of their FPAA 
(Lee, 1995). The new design reduced the parasitic effects, 
increased the linearity, and increased the noise immunity.  
In addition, a transconductor switch exhibits a linear 
resistance, so each switch can also be used as a variable 
resistor by driving the gate voltage with a multivalued 
memory (or other internal or external signal). However, 
the large transistors needed for low frequency operation and 
the addition of a multivalued memory for each switch 
greatly increases the area required for the interconnects 
(Lee and Gulak, 1995). 

Other switch designs have been proposed as well. 
Premont et al. (1996) used a current conveyor as the 
switching element. This was particularly novel, because 
they used the current conveyor for both the switching 
element and the active computational element. In an effort 
to provide a radiation tolerant FPAA for space applications, 
Edwards et al. (2000) proposed the use of metal to metal 
antifuses for the switches. The antifuse design they used 
also has the benefit of a relatively low resistance (in the 
15–25 ohm range). 

Besides the use of different switches, interconnect 
schemes are also varied in overall architecture (see  
Figure 3). In the Premont et al. (1996) FPAA discussed 
above, the use of a current conveyor for both the switching 
element and active computational element leads to the 

CABs and the switching interconnects becoming 
indistinguishable. The overall architecture becomes a 
homogeneous mesh of logic with a minimum number of 
switches introduced into the signal path. Various other 
approaches have also been tried to minimise the number 
of switches. Quan et al. proposed the use of local 
interconnects. In their architecture, each CAB can be 
connected to its eight neighbours and itself (Embabi  
et al., 1996). This would seem to be a severe limitation on 
the flexibility of this FPAA; however, they focus on the 
large number of analog circuits with mostly local 
interconnections (Quan et al., 1998). Pierzchala et al. (1995) 
tried an even more limiting architecture in which no 
electronic switches were included in the signal paths. While 
these designs may provide benefits in bandwidth and 
signal to noise ratio (SNR), they lack the flexibility and 
generality needed in a truly general purpose FPAA. 

Figure 3 A number of different interconnect schemes have 
been used in FPAAs including (a) local connections; 
(b) global connections; (c) cross bar networks and  
(d) fat tree interconnects 

 

In another design, Pierzchala et al. (1994) introduced an 
interconnect scheme with both local and global signal 
paths. This configuration provided local routing paths for 
a cell’s four neighbours (north, south, east and west), as 
well as connections to global busses that run horizontally, 
vertically, and diagonally. This two tiered hierarchy 
increases the routing flexibility within the FPAA. An even 
more flexible interconnection network is the crossbar 
switch (Ray et al., 2000). The crossbar switch offers a 
nonblocking, fully connectable architecture; however, for a 
large number of inputs and outputs its size can be too 
big (O(N2) growth rate) (Lee and Gulak, 1991b). Lee and 
Gulak (1991a) tried to solve this problem by using an 
area-universal fat tree network. They used a hierarchical 
fat tree network of small crossbar switches where the CABs 
were connected as the leaves of the tree. In an additional 
effort to minimise the size required by the switch networks, 
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the number of connections was constrained  
(Lee and Gulak, 1991b). Unfortunately, their prototype was 
too small to really test this interconnect concept. 

2.4 Application focus 

A general purpose, commercially viable FPAA, similar to 
commercial FPGAs, remains elusive. Many FPAA designs 
have sacrificed size and generality in favour of better 
performance for a constrained set of circuit designs. FPAAs 
have been proposed for evolvable hardware (Keymeulen  
et al., 2000; Santini et al., 2001; Stoica et al., 2001), 
neural networks (Lee and Gulak, 1991a, 1991b),  
signal conditioning (Klein, 1996), programmable filters 
(Embabi et al., 1996; Quan et al., 1998), fuzzy logic 
(Pierzchala et al., 1994), and high frequency applications 
(Gaudet and Gulak, 1997). Others FPAA designs  
have attempted to focus on a broader class of systems 
including both linear and nonlinear elements (Bratt, 1998; 
Ray et al., 2000). However, these efforts have failed to 
produce a suitably generic, user friendly FPAA. In addition, 
all of the FPAAs to date have been very small. The number 
of CABs on a given device remains under 50 with many of 
the devices having less than ten CABs. While several 
companies currently sell FPAA devices, the market 
remains relatively small, and no single device or 
technology has received widespread acceptance. 

3 The analog advantage 

The future of FPAAs lies in their ability to speed the 
implementation of advanced, low power signal processing 
systems. Growing demand for complex information 
processing on portable devices has motivated a lot of 
contemporary research in the design of power efficient 
signal processing systems. For analog systems to be 
desirable to the largely digital signal processing 
community, they need to provide a significant advantage in 
terms of size and power and yet still remain relatively easy 
to use and integrate into a larger digital system. 

The primary benefit of implementing signal processing 
systems in analog is the potential for large savings in power 
consumption. For DSP microprocessors, Gene’s law 
postulates that the power consumption, as measured in 
Power/MMAC, is halved about every 18 months (Frantz, 
2000). These advances largely follow Moore’s law, and they 
are achieved by using decreased feature size and other 
refinements, such as intelligent clock gating. Unfortunately, 
a problem looms on the horizon; the power consumption of 
the analog to  digital converter (ADC) does not follow 
Gene’s law and will soon dominate the total power budget 
of digital systems. While ADC resolution has been 
increasing at roughly 1.5 bits every five years, the power 
performance has remained the same, and soon, physical 
limits will further slow progress. 

 
 

Most current signal processing systems that generate 
digital output place the ADC as close to the analog 
input signal as possible to take advantage of the 
computational flexibility available in digital processors. 
However, the development of large-scale FPAAs  
and the CAD tools needed for their ease of use, would 
allow engineers the option of performing some of the 
computations in reconfigurable analog hardware prior to 
the ADC, resulting in both a simpler ADC and a 
substantially reduced computational load on the digital 
processors that follow. Experimental data from analog 
signal processing systems has shown that power 
requirements can be decreased up to five orders of 
magnitude over typical DSP microprocessor 
implementations (Ellis et al., 2002; Smith et al., 2002b).  
As illustrated in Figure 4, this corresponds to a 20 year  
leap forward on the power curve predicted by Gene’s Law 
(Hall et al., 2004b). 

Figure 4 Data from Frantz (2000) showing the power 
consumption trends in DSP microprocessors along with 
data taken from a recent analog, floating-gate 
integrated chip 

 
Source: Ellis et al. (2002), Hasler et al. 

(2002) and Smith et al. (2002b) 

For analog systems to be desirable to the largely digital 
signal processing community they not only need to have a 
significant advantage in terms of size and power but they  
must be relatively easy to use and easily integrated into a 
larger digital system. In addition, they must be shown to be 
accurately programmable and effective at implementing 
many of the key systems found within digital signal 
processing (DSP). As shown in Table 2, the functionality 
desired for any technology focused on signal processing 
includes monolithic filters, linear and nonlinear scalar 
functions, vector-matrix operations (i.e., transforms, 
distance metrics, winner take all, principle component 
analysis, etc), linear phase filters, adaptation, and tap delay 
lines for FIR systems. 
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Table 2 Summary of signal processing functionality 

Functionality DSP µP Trad. analog 
Large – scale 

FPAA 
Programmable • – • 
Monolithic filters o • • 
Linear scalar • o • 
Nonlinear scalar o • • 
Vector-matrix o o • 
Linear phase filters • – o 
Adaptivity o – o 
Tap delay lines • o o 

– = No or very limited support 
o = Possible 
• = Efficient, well suited to technology. 

Recent advances in analog floating gate technologies have 
shown it to be a viable alternative to traditional FPAA 
designs (Hall et al., 2002). As shown in Figure 4, analog 
floating gate circuits have shown tremendous gains in 
efficiency (a factor of as much as 10,000) compared with 
custom digital approaches for the same applications, and 
when used in the ADC, they result in more efficient biasing. 

4 Floating gate technology in programmable 
analog circuits 

Previous FPAAs have suffered from their small size and 
lack of functionality/generality. The next generation  
FPAA needs to correct these problems in order to extend the 
usefulness and acceptance of FPAAs. Ideally, one would  
like a small, easily programmable element that can be 
configured to act as an ideal switch, variable resistor, and 
configurable computational element. While such a  
device is indeed ideal, floating gate transistors do offer 
some of these qualities. Previously, we have shown  
that the floating gate transistor can be used as a (nonideal) 
switch, variable resistor, and programmable element  
within larger computational blocks (e.g., analog  
multiplier, programmable filter, programmable OTAs, etc) 
(Hall et al., 2002). 

In addition, the small size of the floating gate structure 
will allow larger, more functional FPAAs to be built, using 
this technology. One example of the capability/area 
improvement that can be achieved with floating gate 
transistors is the programmable current mirror. Pankiewicz  
et al. have presented one of the most recent FPAA designs. 
Their FPAA is based on OTAs in which the current 
mirrors on the differential outputs can be programmed. 
They use a bank of current mirrors as shown in the 
simplified form in Figure 5. Each current mirror requires 64  

MOS transistors, 31 digitally controlled switches, and five 
memory cells to hold the configuration of the switches.  
The entire structure can be replaced with two programmable 
floating gate transistors. The area savings in this case are 
quite dramatic. Furthermore, the resolution of the bank of 
current mirrors is set at five bits; whereas the floating gate 
current mirror’s resolution can be varied based on the need 
of a given application with a maximum resolution of 
approximately ten bits (Sarpeshkar, 1997). 

The floating gate transistors used in these FPAAs are 
standard pFET devices whose gate terminals are not 
connected to signals except through capacitors (e.g., no DC 
path to a fixed potential) (Hasler et al., 1999). Figure 6 
shows the layout, cross section, and circuit symbol for the 
floating gate pFET device. Because the gate terminal is 
well insulated from external signals, it can maintain a 
permanent charge and thus it is an analog memory cell 
similar to an EEPROM cell. With a floating gate, the 
current through the pFET channel is dependent on  
the charge of the floating gate node. By using hot electron 
injection to decrease the charge on the floating gate node 
and electron tunnelling to increase the charge on the 
floating gate node, the current flow through the pFET 
channel can be accurately controlled (Hasler et al., 1999; 
Kucic et al., 2001a). 

Figure 5 Layout, cross section, and circuit diagram of the 
floating gate pFET in a standard double-poly, n-well 
MOSIS process: The pFET transistor is the standard 
pFET transistor in the n-well process. The gate input 
capacitively couples to the floating gate by a capacitor. 
Between Vtun and the floating gate is our symbol for a 
tunneling junction – a capacitor with an added arrow 
designating the charge flow 
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Figure 6 Standard designs often achieve circuit programmability by embedding switchable arrays of elements (such as transistors or 
capacitors) within the logic cells. Here, a conceptual version of Pankiewicz et al. (2002)’s programmable current mirror is 
shown. In their case, 5 bits were used to set the switches. This requires 64 MOS transistors, 31 digitally controlled switches, and 
five memory cells to hold the configuration of the switches. Using floating gate technology, this entire structure can be replaced 
with two programmable floating gate transistors 

 
 
4.1 Floating gate switches 

Using a floating gate transistor as a switch requires  
that the device be turned ‘on’ or turned ‘off’. Ideally, the 
‘on’ state corresponds to the free flow of current through 
the device or equivalently, zero impedance between  
the source and the drain. Likewise, the ‘off’ state is 
characterised by zero current flowing through the  
device – an infinite impedance between the source  
and the drain nodes. A floating gate transistor, however, 
does not act as a perfect switch. The ‘on’ state is 
characterised by an impedance greater than zero, and the 
‘off’ state has an impedance less than infinity.  
Therefore, the quality of a floating gate transistor as a 
switch is determined by measuring the ‘on’ and ‘off’ 
impedances. 

The floating gate switch network has been 
characterised in Hall et al. (2004b). The switches were 
found to exhibit similar characteristics to standard pFET 
switches with an ‘on’ resistance as low as 11 kΩ and an ‘off’ 
resistance in the low gigaohm range. They have also been 
shown to be accurately programmable and capable of 
implementing a variable resistance. As shown in Figure 7, 
the floating gate switch can be programmed in between the 
‘on’ and ‘off’ extremes. 

To increase the quality of a switch, the floating gate 
transistors are programmed to the far extremes of their 
range. In this case, one of the limiting factors is the ability 
of the measurement equipment to measure the very  
small currents present as the switch is programmed ‘off’. 
To extend the viable programming range, current 
measurements are taken at larger VDD’s as shown in  
Figure 7. Measuring the currents with VDD = 65 V, allows 
the I–V curves to be visible to the programming 
infrastructure 1–V below the point visible when 
VDD = 3.3 V. 

Figure 7 Floating gate switches can be programmed within a 
wide range. Here, examples of an ‘on’, ‘off’, and 
midposition device are shown. To extend the effective 
programming range of the device, large currents are 
measured with VDD = 3.3 V and small currents are 
measured with VDD = 6.5 V during programming 

 

In the operating mode of this FPAA, the voltage on the gate 
capacitor for all switches is the same. From Figure 7, it is 
clear that the ‘off’ switches do not pose a problem, since 
any gate voltage selected at or above 0.3 V should provide a 
sufficiently high impedance. However, the ‘on’ switch 
exhibits a decrease in quality as the gate voltage is increased 
to VDD. Thus, an operating gate voltage of 0.3 V is deemed 
optimal for the current programming scheme. 

4.2 Switch as computational element 

When used as a switch, the floating gate should be as 
transparent a part of the circuit as possible. However,  
Figure 7 shows that the floating gate transistor can be used 
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as an in-circuit element (Kucic et al., 2001b; Hasler and 
Minch, 2002). By adjusting the charge on the floating gate 
node between the extremes used for ‘on’ and ‘off’, the 
impedance of the switch can be varied over several orders of 
magnitude. Thus, a variable linear resistor can be 
synthesised by the floating gate switch. 

Using the floating gate switches as in-circuit elements 
allows for a very compact architecture. The physical area 
needed for the CABs is reduced greatly, because resistors, 
which consume relatively large amounts of space on CMOS 
processes, are not needed as separate components. Also, by 
reducing the number of individual circuit elements, signal 
routing is simplified, while not losing functionality. 

4.3 Floating gate transistors within computational 
logic 

Current FPAA designs rely on switches as the primary or 
sole programmable element on the chip. Biases, multiplier 
coefficients, resistances, and similar elements are set via 
offchip components or with low resolution capacitor banks 
or current mirror banks. Thus, the ability to modify or 
program the actual analog computational logic is severely 
limited. By using floating gate transistors within the 
computational logic, however, circuit characteristics can be 
directly modified. 

In the FPAA explored here, floating gate transistors are 
used within the computational analog blocks (CABs) to set 
bias voltages for the OTAs (see Figure ll(a)), adjust the 
corner frequencies on the capacitively coupled current 
conveyors (C4s), and set multiplier coefficients in the 
vector-matrix multipliers. In this manner, the floating gate 
transistors allow the characteristics of the computational 
elements to be programmed onchip while still maintaining a 
compact CAB. Thus, by allowing both the switch networks 
and the computational logic to be programmable, the 
flexibility and usability of these FPAAs are greatly enhanced 
over previous designs. 

4.4 Programmability 

By using floating gate devices as the only programmable 
element on the chip, configuring the chip is greatly 
simplified. Additionally, all of the floating gate transistors 
are clustered together to aid in the programming logic and 
signal routing. Decoders on the periphery of the circuit 
are connected to the drain, source, and gate (through a 
capacitor) terminals of the floating gate matrix. During 
programming mode, these decoders allow each floating gate 
transistor to be individually programmed using hot electron 
injection (see Figure 8) (Kucic et al., 2001a). 
 
 
 
 
 
 
 

Figure 8 By selectively setting the gate and drain voltages of the 
columns and rows, a single floating gate transistor can 
be programmed using hot electron injection without 
affecting the neighbouring devices 

 

Part of the previous work has been the development of a 
systematic method for programming arrays of floating gate 
transistors (Kucic et al., 2001a, 2001b; Smith et al., 2002a). 
A microprocessor based board has been built to interface a 
PC to these analog floating gate arrays for the purposes 
of programming and testing. With a PC controlling the 
programming of these devices, the details of using hot 
electron injection and tunnelling to program individual 
floating gate switches have been abstracted away from the 
enduser. The programming algorithms have been optimised 
for accuracy and speed, while giving the enduser an easy 
to use interface for configuring arrays of floating gate 
devices. 

5 Large-scale FPAAs 

As shown in Figure 9, traditional FPAAs resemble the early 
PLDs in that they are focused on small systems such as 
low order filtering, amplification and signal conditioning. 
However, the class of large-scale FPAAs that we are 
exploring in this paper are more analogous to modern 
FPGAs in that they are much larger devices with the 
functionality needed to implement high level system blocks 
such as programmable high order filtering and Fourier 
processing in addition to having a large number of medium 
grain, programmable analog blocks (e.g., operational 
transconductance amplifiers (OTAs), transistor elements, 
capacitors, etc). 
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Figure 9 (a) Digital PLDs can be used to implement small, carefully defined pieces of a complex system, while FPGAs can be used to 
implement entire systems including processor datapaths, complex DSP functions, and more. Modern FPGAs can be 100–10,000 
times larger and more complex than the PLDs of the 1970s and 1980s and (b) Analagously, traditional FPAAs resemble the 
early PLDs in that they are focused on small systems such as low order filtering, amplification and signal conditioning. 
However, the FPAAs based on the floating gate devices presented here are much larger devices with the functionality needed to 
implement high level system blocks such as programmable high order filtering and Fourier processing in addition to having a 
large number of programmable op-amp and transistor elements 

 
(a) (b) 

 
Large-scale FPAAs are possible using floating gate 
technology. In the previous section, floating gate transistors 
have been shown to be viable analog programmable 
elements within the switch network and the computational 
logic. This enhances the functionality and flexibility of the 
FPAA while simplifying the programming infrastructure and 
creating a very compact, scalable architecture. 

In our large-scale FPAAs, the computational logic is 
organised in a compact computational analog block (CAB) 

providing a naturally scalable architecture. CABs  
are tiled across the chip in a regular mesh  
type architecture with global busses and local 
interconnects inbetween as shown in Figure 10(a).  
Early designs typically have 50–100 CABs on a  
single chip and often consume 9–36 mm2 in the  
TSMC 0.35 micron CMOS process as the size of the switch 
networks and number and complexity of the CABs is 
varied. 

Figure 10 (a) This is the overall block diagram for a large-scale FPAA. The switching interconnects are fully connectable crossbar 
networks built using floating gate transistors and (b) This is a Computational Analog Block (CAB) for an FPAA based on 
floating gate devices. Here, each CAB contains a four by four matrix multiplier, three widerange operational transconductance 
amplifiers (OTAs), three fixed value capacitors, a capcatively coupled current conveyor (C4), a peak detector, and two FET 
transistors. The input and output signals shown in this figure are routed to the rows of the switch matrix 
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5.1 Computational analog blocks 

Many example CABs can be imagined using this 
technology. Figure 10(b) shows one example CAB, whose 
functionality is enhanced by a mixture of medium and 
coarse grain computational blocks similar to many modern 
FPGA designs. The computational blocks were carefully 
selected to provide a sufficiently flexible, generic 
architecture while optimising certain frequently used signal 
processing blocks. For generality, three operational 
transconductance amplifiers (OTAs) are included in each 
CAB. OTAs have already been shown to be effective at 
implementing a large class of systems including 
amplification, integration, filtering, multiplication, 
exponentiation, modulation, and other linear and nonlinear 
functions (Ray et al., 2000; Pankiewicz et al., 2002; 
Sanchez-Sinencio et al., 1989; Totally Re-configurable 
Analog Circuit – TRAC Datasheet, 1999). In addition, the 
two FET devices provide the ability to perform logarithmic 
and exponential functions as well as convert back and forth 
between current and voltage. The three capacitors are fixed 
in value to minimise the size of the CAB and are primarily 
used on the outputs of the OTAs; however, they will be 
available for any purpose. The variable capacitor and/or 
current mirror banks found in some designs are not needed 
here, because the use of floating gate transistors in the 
OTAs will give the user sufficient control in programming 
the transconductance of the amplifiers (Hall et al., 2004b; 
Pankiewicz et al., 2002). Eliminating the capacitor banks 
creates a large savings in the area required for each CAB. 

The high-level computational blocks used in this design 
are a capacitively coupled current conveyor (C4) used as a 
bandpass filter module and the 4 × 4 vector-matrix multiplier 
block. In general, the C4 module provides a straightforward 
method of subbanding an incoming signal. This allows 
Fourier analysis analagous to performing a Fast Fourier 
Transform (FFT) in the digital domain. The vector-matrix 
multiplier block allows the user to perform a matrix 
transformation on the incoming signals. Together these 
blocks can be used like a Fourier processor (Hasler  
et al., 2001; Kucic et al., 2001a),. In addition, a peak 
detector is added to each CAB. 

5.2 Testbed FPAA 

The testbed FPAA based on floating gate devices was 
fabricated in a 0.5 micron, standard CMOS process. This 
FPAA contains two CABs with a 64 × 16 floating  
gate crossbar switch network connecting them (Hall  
et al., 2002). The CAB design was slightly smaller than the 
one outlined in Section 3 having a C4 bandpass filter 
module, 4 × 4  vector-matrix multiplier, and three wide 
range OTAs. However, this design is more than sufficient 
to test the concept of FPAAs with floating gate devices and 
characterise the elements of the CAB. 

As an initial example of the testbed system, a first order 
filter is implemented using an OTA in one of the CABs. 
Figure 11 shows how the circuit is mapped onto the FPAA 
using five floating gate switches. Once the switch network 

is configured, the biasing floating gate transistor is 
programmed to vary the corner frequency of this first order 
filter. The frequency response is shown for several 
programmed corner frequencies in Figure 12. The 
moderate gain in the lower frequencies is due to  
the switches in the feedback loop of the OTA. Ideally, the 
output node and the negative input node would be directly 
connected. However, in the FPAA, this path must be routed 
via the switch network, which means that a minimum of two 
floating gate switches will be in the feedback loop. The gain 
can be minimised by injecting the floating gates of these 
switches to a lower charge, or if gain is desired for a given 
application, then it can be set by programming these 
switches to a higher charge. 

Figure 11 (a) The source-follower is configured by programming 
the floating gate charge on the floating gate device. 
(The other half of the current mirror is internal to the 
wide-range OTA.) Thus, the effective conductance can 
be modified for each of the OTAs on chip and (b) 
Using the switch matrix, an OTA located in one of the 
Computational Analog Blocks (CABs) is connected in 
a source-follower configuration, and two external pins 
are routed to the OTA as the input and output signals. 
The programmable biases illustrated in (a) are not 
shown here for simplicity, but each OTA has a current 
mirror and floating-gate current source that sets its bias 

 

Figure 12 The frequency response of the source-follower circuit 
is shown for several bias currents. An internal floating 
gate transistor is used as a current source to set the 
OTA’s bias and thus the bandwidth of this first order 
filter 
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In Figure 13, a second order section filter is shown along 
side the FPAA implementation. Once again, explicit 
capacitors are eliminated since the switch parasitics provide 
the necessary capacitance. Using the floating gate 
programmable biases, the two OTAs in a source-follower 
configuration were biased to the same level and the third 
OTA’s bias current was increased to adjust the Q peak of 
the system. The frequency response for this circuit is 
shown in Figure 14. As expected, the Q peak increases as 
the bias current (e.g., conductance) increases. 

Figure 13 (a) a second order section filter can be implemented 
with two OTAs in a source-follower configuration and 
a third OTA that creates positive feedback and (b) 
using the switch matrix, three OTAs within the CABs 
are connected in a second order section configuration 

 

Figure 14 The experimental frequency response of a second 
order section filter is shown here. The Q parameter is 
adjusted by increasing the bias current of the positive 
feedback amplifier via a floating gate current source. 

 

For second order functions such as the second order section 
and diff2 circuit, reasonable Q peaks and filter bandwidths 
require small bias currents (in the picoamp to femtoamp 
range). While the floating gate transistors can set bias 
currents this low, the constraint becomes the ability to  
 
 
 
 
 

accurately measure these currents while programming the 
floating gate transistors. Experimental results from Figure 7 
show a measurement threshold of 1 pA using present 
measurement techniques. An important consideration 
here is the relative sizing of the transistors that  
set the bias currents. The floating gate transistor shown in 
Figure 11(a) sets the current through the nMOS current 
mirror (the other half of the current mirror is internal to the 
OTA module). To set small bias currents, it is preferable to 
have the nFET and floating gate transistor sized larger than 
the current mirror nFET internal to the OTA. In this 
configuration, the current mirror functions as a current 
divider, and thus, very low bias currents can be set by 
programming the floating gate transistor to generate currents 
in the picoamp range. 

Based on these testbed systems, one can start to imagine 
a wide class of systems that can be implemented and 
configured on FPAAs with many of these CABs on 
them. In particular, differentiators, cascaded second order 
sections, bandpass filters, matrix transforms (including 
DCTs and wavelet transforms), and frequency 
decomposition are all well suited for this architecture.  
In the audio arena alone, designs could be prototyped to 
implement forms of noise suppression, audio enhancement, 
feature extraction, auditory modelling, and simple audio 
array processing. Other potential interest areas  
include communications signal conditioning (modulation, 
mixing, etc), transform coding, and neural networks  
(with external training). Most of these systems rely on 
efficient subband processing; so, each CAB has been 
designed with a C4 bandpass to optimise this operation.  
As shown in Figure 15, the centre frequency of the C4 filter 
can be moved over a large range of frequencies. 

Figure 15 Frequency decomposition (subband processing) can be 
achieved on the test bed FPAA by using the C4 
bandpass filter block in each CAB. In this simulation 
of the FPAA, the centre frequency of the C4 is shown 
to be programmable over a wide range of frequencies 
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6 Conclusion 

Large-scale FPAAs based on floating gate technologies 
provide the necessary levels of programmability and 
functionality to implement complex signal processing 
systems. With orders of magnitude power consumption 
savings over traditional digital approaches, this 
reconfigurable analog technology offers an attractive 
alternative for implementing advanced signal processing 
systems in low power, embedded devices. A testbed FPAA 
based on floating gate circuits has been built and initial 
results have been shown. 
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