
Southern Adventist University Southern Adventist University

Knowledge Exchange Knowledge Exchange

Faculty Works School of Computing

11-2004

System–on–a–programmable–chip development platforms in System–on–a–programmable–chip development platforms in

the classroom the classroom

Tyson S. Hall
Southern Adventist University, tyson@southern.edu

James O. Hamblen
Georgia Institute of Technology - Main Campus

Follow this and additional works at: https://knowledge.e.southern.edu/facworks_comp

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
T. S. Hall and J. O. Hamblen, “System–on–a–programmable–chip development platforms in the
classroom,”IEEE Transactions on Education, vol. 47, no. 4, pp. 502–507, Nov. 2004.

This Article is brought to you for free and open access by the School of Computing at Knowledge Exchange. It has
been accepted for inclusion in Faculty Works by an authorized administrator of Knowledge Exchange. For more
information, please contact jspears@southern.edu.

https://knowledge.e.southern.edu/
https://knowledge.e.southern.edu/facworks_comp
https://knowledge.e.southern.edu/computing
https://knowledge.e.southern.edu/facworks_comp?utm_source=knowledge.e.southern.edu%2Ffacworks_comp%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=knowledge.e.southern.edu%2Ffacworks_comp%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jspears@southern.edu

502 IEEE TRANSACTIONS ON EDUCATION, VOL. 47, NO. 4, NOVEMBER 2004

System-on-a-Programmable-Chip Development
Platforms in the Classroom

Tyson S. Hall and James O. Hamblen

Abstract—This paper describes the authors’ experiences using a
system-on-a-programmable-chip (SOPC) approach to support the de-
velopment of design projects for upper-level undergraduate students
in their electrical and computer engineering curriculum. Commercial
field-programmable gate-array (FPGA)-based SOPC development boards
with reduced instruction set computer (RISC) processor cores are used
to support a wide variety of student design projects. A top-down rapid
prototyping approach with commercial FPGA computer-aided design
tools, a C compiler targeted for the RISC soft-processor core, and a large
FPGA with memory is used and reused to support a wide variety of student
projects.

Index Terms—Altera, field-programmable gate array (FPGA), mi-
croblaze, Nios, processor core, system on a chip (SOC), system on a
programmable chip (SOPC), Xilinx.

I. INTRODUCTION

A new technology has emerged that enables designers to utilize
a large field-programmable gate array (FPGA) that contains both
memory and logic elements along with an intellectual property (IP)
processor core to implement a computer and custom hardware for
system-on-a-chip (SOC) applications. This new approach has been
termed system-on-a-programmable-chip (SOPC). During the past two
years, several commercial reduced instruction set computer (RISC)
processor cores have been introduced [1]. In this paper, the authors
will overview several commercial processor cores that can be used in
the classroom, explore the computer-aided design (CAD) tool flow
involved with this process, and highlight sample student projects that
have used this technology.

II. TECHNOLOGY OVERVIEW

A. SOPC Processor Cores

Hard-processor cores use an embedded-processor core (in ded-
icated silicon) in addition to the FPGA’s normal logic elements.
Hard-processor cores added to an FPGA are a hybrid approach,
offering performance tradeoffs that fall somewhere between a tradi-
tional application-specific integrated circuit (ASIC) and an FPGA;
they are available from several manufacturers with a number of
different processor flavors. For example, Altera offers an ARM
processor core embedded in its APEX 20KE family of FPGAs that
is marketed as an Excalibur device. Xilinx’s Virtex-II Pro family of
FPGAs include up to four PowerPC processor cores on-chip. Cypress
Semiconductor also offers a variation of the SOPC system. Cypress’s
Programmable-System-on-a-Chip (PSoC) is formed on an M8C pro-
cessor core with configurable logic blocks designed to implement the
peripheral interfaces, which include analog-to-digital converters, dig-
ital-to-analog converters, timers, counters, and universal asynchronous
receivers–transmitters (UARTs) [2], [3].
Soft cores, such as Altera’s Nios and Xilinx’s MicroBlaze proces-

sors, use existing programmable logic elements from the FPGA to im-
plement the processor logic. As seen in Table I, soft-core processors
can be very feature rich and flexible, often allowing the designer to

Manuscript received April 23, 2003; revised November 10, 2003.
The authors are with the School of Electrical and Computer Engineering,

Georgia Institute of Technology, Atlanta, GA 30332 USA.
Digital Object Identifier 10.1109/TE.2004.825926

TABLE I
FEATURES OF COMMERCIAL SOFT PROCESSOR CORES

specify the data path width, the automatic logic unit (ALU) function-
ality, number, and types of peripherals, and memory-address space pa-
rameters at compile time. However, such flexibility comes at a cost.
Soft cores have slower clock rates and use more power than an equiv-
alent hard-processor core.
With current pricing on large FPGAs, the addition of a soft-processor

core only costs a few dollars based on the logic elements it requires.
The remainder of the FPGA’s logic elements can be used to build ap-
plication-specific system hardware. Traditional SOC devices [ASICs
and custom very-large-scale-integration integrated circuits (VLSI ICs)]
still offer higher performance, but they also have large development
costs and longer turnaround times [4]. For student projects requiring
an actual hardware implementation, the FPGA-based SOPC approach
is easier, faster, smaller, and more economical.
Typically, additional software tools are provided along with each

processor core to support SOPC development. A special computer-
aided design (CAD) tool specific to each soft-processor core is used to
configure processor options, which can include register file size, hard-
ware multiply and divide, interrupts, and input/output (I/O) hardware.
This tool outputs a hardware description language (HDL) synthesis
model of the processor core in very-high high-speed integrated circuit
hardware description language (VHDL) or Verilog. In addition to the
processor, other system logic is added, and the resulting design is syn-
thesized using a standard FPGA synthesis CAD tool. The embedded
application program for the processor is typically written in C or C++
and compiled using a customized compiler provided with the processor
core tools.

B. SOPC Development Hardware

SOPC boards and required CAD tools are available from both Altera
and Xilinx [5], [6]. The Altera Nios development board shown in Fig. 1
was one of the earliest SOPC boards available. It contains a 200K-gate
FPGA, Flash, and SRAM memory on-board, as well as several I/O
options and connectors for attaching external devices. The development
kit includes a complete set of tools for SOPC design.
A number of daughter cards are available for this board to extend its

functionality. For projects that require networking, a custom Ethernet
kit is available. A custom CompactFlash board can also be added if
additional and/or removable storage is needed. In addition, third-party
vendors make a number of add-on boards that can be interfaced directly
to the Nios board via its standard PCI Mezzanine Connector (PMC).

0018-9359/04$20.00 © 2004 IEEE

IEEE TRANSACTIONS ON EDUCATION, VOL. 47, NO. 4, NOVEMBER 2004 503

Fig. 1. Altera’s Nios board contains a 200 000 gate FPGA, Flash, SRAM,
several I/O options, and a RISC soft-processor core for the FPGA.

Several third-party vendors also provide software to aid in the devel-
opment of systems on the Nios processor. Everything from real-time
operating systems to advanced debugging tools are available. Of par-
ticular interest, there is a � Clinux kernel that runs on the board, but
licensing fees still make this add-on kit somewhat expensive for stu-
dent projects.
Fig. 2 shows a low-cost Digilent 2E FPGA board that contains a

200 000 gate Xilinx Spartan-IIE FPGA [7]. This board can be used
for SOPC development with Xilinx’s MicroBlaze processor core. This
particular board has very limited functionality outside of the FPGA (no
external memory, high-speed conntectors, etc.); however, it is very eco-
nomically priced (about one fifth of the cost of a Nios board) and can be
an attractive option for student projects. To support the SOPC projects,
an additional memory module was designed as a student project and
attached to the board’s header connectors. The additional memory is
needed to support the development of larger programs.
Several daughter cards are available from Digilent to extend the

functionality of this board including Ethernet, USB, parallel port,
serial port, analog I/O, and digital I/O boards. In addition, with three
40-pin, general-purpose I/O headers, this board is designed to act as
a system board with project-specific functionality added via custom
peripheral boards.

III. SOPC DESIGN USING CAD TOOLS AND FPGAS

A. Traditional Tool Flow

The traditional flow of commercial CAD tools typically follows a
path from hardware description language (HDL) or schematic design
entry through synthesis and place and route tools to the programming
of the FPGA. FPGAmanufacturers provide CAD tools such as Altera’s
Quartus II and Xilinx’s ISE software, which take the designer through
this process in steps. As shown in Fig. 3, the addition of a processor
core and the tools associated with it are a superset of the traditional
tools. The standard synthesis, place and route, and programming func-
tionality are still needed, and in the case of both Altera and Xilinx,
the same CAD tools (Quartus II or ISE) are used to implement these
blocks.

B. Processor Core Configuration Tools

Today, a number of predefined processor cores are available from
various sources. General public licensed (GPL) processor cores can be
found on the Web (i.e., www.opencores.org), while companies such as
Altera (Nios processor), Xilinx (MicroBlaze processor), and Tensilica
(Xtensa processor) provide their processors for a fee. This paper will

Fig. 2. Digilent’s Digilab 2E low-cost FPGA board contains a 200 000 gate
Xilinx FPGA that can support Xilinx’s MicroBlaze soft core.

focus on the processors provided by the FPGAmanufacturers, although
cores from third-party sources are similar in nature.
Processor cores provided by FPGAmanufacturers are typically man-

ually optimized for the specific FPGA family being used and, as such,
are more efficiently implemented on the FPGA than a student-designed
core (especially given the time and resource constraints of most class
projects). in addition, these companies provide extensive support tools
to ease the customization and use of their cores, including high-level
compilers targeted at the custom cores (see Section III-C).
In the case of Altera and Xilinx, the Processor Core Configuration

Tool block shown in Fig. 3 is realized in a user-friendly graphical user
interface (GUI) that allows the designer to customize the processor
for a particular project. The configurable parameters include the data
path width, memory, address space, and peripherals (including arbi-
trarily defined general-purpose I/O, UARTs, Ethernet controllers, and
memory controllers). Once the processor parameters are specified in
the GUI interface, the processor core is generated in the form of an ob-
fuscated HDL file (in Altera) or a netlist file (in Xilinx). This file can
then be included within a traditional HDL design using the standard
CAD tools. Specific pin assignments and additional user logic can be
included at this point like any other FPGA design. Next, the full hard-
ware design (processor core and any additional user logic) is compiled
(synthesis, place and route, etc.), and the FPGA can be programmed
with the resulting file using the standard tools. At this point, the hard-
ware design is complete, and the FPGA logic has been determined.

C. High-Level Compiler for Processor Core

As shown on the right-hand side of Fig. 3, the next step is to write
and compile the software that will be executed on the soft-processor
core. When the Processor Core Configuration Tool generates the HDL
or netlist files, it also creates a number of library files and their associ-
ated C header files that are customized for the specific processor core
generated. A C/C++ compiler targeted at this processor is also pro-
vided. The designer can then program stand-alone programs to run on
the processor. As an option, the designer can compile code for an op-
erating system targeted for the processor core. Altera sells an add-on

504 IEEE TRANSACTIONS ON EDUCATION, VOL. 47, NO. 4, NOVEMBER 2004

Fig. 3. CAD tool flow for SOPC design is comprised of the traditional design process for FPGA-based systemswith the addition of the processor core configuration
tool and software design tools. In this figure, the program and data memory is assumed to be on-chip for simplicity. Fig. 4 shows a more realistic memory
configuration with external memory.

kit that includes a version of � Clinux that has been ported to the
Nios processor, and several other operating systems are available from
third-party vendors.

D. Initializing Memory

Once a program/data binary file has been generated, it must be
loaded into the processor’s program and/or data memories. This
loading can be done in several ways depending on the memory
configuration of the processor at hand.
1) On-ChipMemory: If the application program is small and can fit

into the memory blocks available on the FPGA, then the program can
be initialized in the memory when the hardware configuration is pro-
grammed (see Sections III-A). This initialization is done through the
standard FPGA tools, such as Altera’s Quartus II software or Xilinx’s
ISE software. However, on-chip memory is typically very limited, and
this solution is not usually an option.
2) Bootloader: In a prototyping environment, the application pro-

gram will most likely be modified a number of times before the final
program is complete. In this case, one can load a “bootloader” program
into the on-chip memory that starts running on boot-up. This program
is small enough to fit in most on-chip memories, and its primary func-
tion is to receive a program binary file over the serial port (or other
interface), load it into external memory, and then start the new code ex-
ecuting. In this way, a new program can be stored into external memory

(SRAM, SDRAM, Flash, etc.) by downloading it over the serial port
(or other interface) on the flywithout having to reload the FPGA’s hard-
ware configuration.
Altera includes a bootloader with its Nios processor called GERMS.

GERMS provides a shell interface with limited debugging capabilities
(view memory contents, erase memory locations, write to memory lo-
cations, etc.) in addition to the basic bootloader functionality. Xilinx
provides a debugger called XMDstub that includes the ability to down-
load a program binary over the serial port (or other interface), store it in
memory, and start the code executing. However, depending on the type
of external memory being used, the XMDstub source code may have
to be modified to properly interface with the memory. In addition, the
debugging functionality implemented in XMDstub can be removed to
provide a simple bootloader that only provides the program download
capabilities.
3) External Nonvolatile Storage: The application program code

can be stored on an external EEPROM, Flash, or other form of
nonvolatile memory. Either the application program can be prepro-
grammed in the external memory module (for a production run) or a
bootloader program could be used to store the application program
in nonvolatile storage. For low-speed applications, the code can be
executed directly from the external memory. However, if high-speed
functionality is required, then a designer could use three memories,
as shown in Fig. 4. In this scheme, the on-chip memory is initialized
with a bootloader, which handles the movement of the application

IEEE TRANSACTIONS ON EDUCATION, VOL. 47, NO. 4, NOVEMBER 2004 505

Fig. 4. This arrangement of on-chip and external memories provides flexiblity
and performance to an SOPC system. The internal memory stores a bootloader
program that can retrieve an application program from the nonvolatile memory
or the PC via the serial interface and store it in volatile memory for execution. In
addition, the nonvolatile memory can be initialized by the bootloader by storing
an application program downloaded from the PC via the serial interface. Thus,
fast execution times can be achieved by executing the program from high-speed
SDRAM (volatile memory); permanent storage is afforded through the use of
flash (nonvolatile memory); and flexibility in programming is achieved through
the bootloader and serial interface.

program between the memories. The fast, volatile memory (i.e.,
SDRAM) is used to store the application program during execution.
Finally, the slower, nonvolatile memory (i.e., Flash or EEPROM)
is used for the permanent storage of the application program. The
bootloader program can be modified to power-up, retreive a program
from nonvolatile storage, store it in the faster, volatile memory, and
then start it executing from the faster memory. This scheme provides
the advantages of permanent storage, fast execution, and the ability to
modify the application program when needed. Of course, it comes at
the expense of having additional memory.

IV. USING SOPC IN THE UNDERGRADUATE CURRICULUM

For the past four semesters, the authors have used FPGA-based
SOPC development boards to construct prototype systems for un-
dergraduate student projects. SOPC boards present an interesting
alternative to the more traditional commercial off-the-shelf microcon-
troller or basic FPGA board approach used to build student projects
that require hardware and software, and their use has lead to a wide
variety of successful student projects [8].
Based on experience with the existing SOPC tools, students need

to have taken previous coursework in digital logic design, computer
architecture, and C programming [9]–[11]. Some prior experience in
VHDL or Verilog and exposure to FPGAs and their associated CAD
tools is also useful. Inmost undergraduate curricula, these requirements
will limit the application of SOPC designs to courses in the senior year.
There is still a significant learning curve to overcome when using

these complex commercial CAD tools. Each new version of the SOPC
CAD tools becomes easier to use, but they are still more complex than
the basic FPGA CAD tools since more steps are required. Students
still need some level of maturity and patience to make it through the
complicated CAD tool flow for SOPC design. To help resolve this issue,
students are now required to complete a system-level tutorial and demo,
using a SOPC reference design during the first fewweeks of any project
course. This requirement forces them to start work earlier and to be
familiar with the SOPC boards hardware and the complex CAD tool
flow before the project-specific work starts.
The authors have found that an experienced user, such as a course

instructor or teaching assistant, still needs to be available to install and

Fig. 5. Student project using the small hobbyist R/C Hummer vehicle with the
color tracking CMUcam all controlled by the Altera Nios SOPC board.

maintain all of the CAD tools and help students when they occasionally
encounter hardware and tool-related problems that they cannot resolve.

A. Using SOPC in Senior Design

ECE 4006, Major Design Project, is an undergraduate, team-ori-
ented design experience. It is a required three-hour semester course
for both electrical and computer engineering students, normally taken
by seniors. Students work together in teams of three or four on a
semester-long design project. For computer engineering students, the
design project must have both hardware and software elements and in-
clude engineering tradeoffs. A number of the student teams have used
the SOPC approach to construct a prototype of their design. Projects
have included Web servers, e-mail servers, vision systems, Internet
appliances, and numerous robots [12]. In all of these projects, students
have used the SOPC development tools to specify a soft-processor
core and compile their embedded application program. They then use
the traditional CAD tools to add any required custom hardware logic,
compile the full system, and configure the FPGA.
Fig. 5 shows a student robotics project. An off-the-shelf hobbyist

radio-controlled (R/C) vehicle was modified so that it is controlled by
the SOPC board. A low-cost CMUcam color vision system is used
to guide the vehicle down hallways [13]. The path to follow in the
hallway of the ECE building was marked with colored poster board
signs. The CMUCAM camera and processor detects and tracks color
blobs. Tracking data is sent to the FPGA-based processor over a serial
port.
A program (written in C) running on the processor reads the tracking

data and determines how to control the speed and steer the vehicle. Like
most R/C models, several pulsewidth-modulated (PWM) servo signals
control the speed and steering.
After examining the hardware/software tradeoffs, students on this

team decided to build PWM controllers in hardware with additional
FPGA logic rather than having several complex, software, interrupt-
driven timer routines running on the processor to generate the needed
PWM signals. The processor simply writes the pulsewidth value to an
I/O register. VHDL-based PWM state machine controllers constantly
read the I/O register and generate the appropriate PWM timing sig-
nals for each of the servos. Such hardware/software tradeoffs would
have beenmore difficult when using a traditionalmicrocontroller-based
approach.
Fig. 6 shows another interesting student design based on a small

commercial robot, Amigobot [14]. This remote-controlled robot has

506 IEEE TRANSACTIONS ON EDUCATION, VOL. 47, NO. 4, NOVEMBER 2004

Fig. 6. Student project using the small Amigobot commercial robot controlled
by the Altera Nios SOPC board.

been used in the well-known robot soccer contests. It has eight SONAR
sensors, an audio system with prerecorded sounds, and two drive mo-
tors with positional feedback. A complex serial communications pro-
tocol is used to send motor commands and transmit sensor information
from a microcontroller inside the robot to a remote PC via a serial port.
The Amigobot was given autonomy by replacing the PC-based

remote-control function with an FPGA-based SOPC board that was
mounted on top of the robot. Additional logic in the FPGA was used
to add a serial port to communicate with the robot’s microcontroller.
A program (written in C) on the SOPC board inputs sensor data makes
high-level decisions and sends motor commands using the existing
serial link to the robot’s internal microcontroller.

B. Using SOPC for Special Projects

The SOPC boards have also been made available for students
working in other senior-level project courses. One student group
designed an add-on memory board for the Digilent Digilab 2E board.
Since the Xilinx Spartan-IIE FPGA on this board has a very limited
amount of on-board memory, most projects utilizing the MicroBlaze
soft-processor core require the additional memory for instruction and
data storage. The memory add-on boards contain 256 kB of memory
with a 16-b-wide output instruction/data bus. As shown in Fig. 7,
the students use two memory boards in parallel to provide 512 kB
of memory with a 32-b-wide instruction/data bus to the MicroBlaze
soft-processor core.

V. CONCLUSION

Overall, using FPGA-based SOPC boards for student design
projects has been a very positive development for student design
projects. Using reconfigurable devices results in a higher level of ab-
straction over traditional design projects, thus allowing the complexity
of design projects to increase. In addition, using general-purpose
SOPC boards saves both time and money by minimizing the necessity
for supplementary project-specific hardware that is often needed to
construct prototypes. These boards have been successfully reused for
several semesters on vastly different projects.
Special educational pricing for schools is available through themajor

FPGA vendors’ university programs on the processor cores, boards,
and CAD tools. This special pricing helps make SOPC an extremely at-
tractive alternative for schools. With the educational discounts, pricing
is comparable to an off-the-shelf microcontroller board.
To implement SOPC systems, students must design both the hard-

ware and software components, requiring students to make a number

Fig. 7. Group of students designed an add-on memory board to expand
the memory available to the MicroBlaze soft-processor core. In this project,
two memory boards are used in parallel to provide 512 kB of memory via a
32-b-wide data bus.

of different decisions in partitioning their systems and allowing them to
explore a wide range of hardware/software tradeoffs. While the com-
plexity of these systems and the additional tools involved in the CAD
tool flow for SOPC designs do present a significant learning curve for
the students to overcome, difficulties can be mitigated through the use
of tutorials, the enforcement of relevant prequisities (previous experi-
ence with VHDL, exposure to FPGAs, etc.), and the availability of an
experienced professor or teaching assistant. Experience has proven that
the projects and learning that result from SOPC design experiences are
well worth the time and effort spent overcoming any obstacles.

ACKNOWLEDGMENT

A number of students and research assistants have contributed to
this work during the past two years. In particular, the authors would
like to thank D. Allred and A. Majid for their help in developing the
memory boards and testing the Xilinx tools, as well as J. Hanson,
T. Mossadak, and M. Phipps at Altera and P. Kane, D. Loftus, and
A. Acevedo at Xilinx for providing software, hardware, helpful advice,
and encouragement.

REFERENCES

[1] C. Snyder. (2000) “FPGA Processor Cores Get Serious,” Cahners Mi-
croprocessor Report. [Online]. Available: http://www.MPRonline.com/

[2] D. Seguine, “Just add sensor—Integrating analog and digital signal con-
ditioning in a programmable system on chip,” Proc. IEEE Sensors, vol.
1, pp. 665–668, June 2002.

[3] M. Mar, B. Sullam, and E. Blom, “An architecture for a configurable
mixed-signal device,” IEEE J. Solid-State Circuits, vol. 38, pp. 565–568,
Mar. 2003.

[4] H. Chang et al., Surviving the SOC Revolution a Guide to Platform-
Based Design. Norwell, MA: Kluwer, 1999.

[5] (2002) Nios Embedded Processor User’s Guide PDF File. Altera Corpo-
ration, San Jose, CA. [Online]. Available: http://www.altera.com/prod-
ucts/devices/nios/

[6] (2002) MicroBlaze Hardware Reference Guide, PDF Filee. Xilinx Cor-
poration, San Jose, CA. [Online]. Available: http://www.xilinx.com/ip-
center/processsor_central/microblaze/

[7] (2002) Digilab 2E Reference Manual PDF File . Digilent, Inc., Pullman,
WA. [Online]. Available: http://www.digilentine.com/Reference/

[8] J. O. Hamblen, “Using an FPGA-based SOC approach for senior design
projects,” in Proc. Int. Conf. Microelectronic Systems Education, 2003,
pp. 18–19.

IEEE TRANSACTIONS ON EDUCATION, VOL. 47, NO. 4, NOVEMBER 2004 507

[9] , “Rapid prototyping using field-programmable logic devices,”
IEEE Micro, vol. 20, pp. 29–37, May/June 2000.

[10] J. O. Hamblen and M. D. Furman, Rapid Prototyping of Digital Sys-
tems. Norwell, MA: Kluwer, 1999.

[11] K. Newman, J. O. Hamblen, and T. S. Hall, “An introductory digital
design course using a low-cost autonomous robot,” IEEE Trans. Educ.,
vol. 45, pp. 289–296, Aug. 2002.

[12] (2003) SOPC Projects HTML File. Georgia Institute of Technology,
Atlanta, GA. [Online]. Available: http://www.ece.gatech.edu/hamblen/
4006/projects/SoPC/

[13] A. Rowe, C. Rosenberg, and I. Nourbakhsh, “A low cost embedded color
vision system,” presented at the 2002 IEEE/RSJ Int. Conf. Intelligent
Robots and Systems, Switzerland, Oct. 2002.

[14] (2001) Amigobot User’s Guide PDF File. ActivMedia Robotics LLC,
Amherst, NH. [Online]. Available: http://www.amigobot.com

	System–on–a–programmable–chip development platforms in the classroom
	Recommended Citation

	tmp.1368736211.pdf.vL6dp

