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Abstract 

Set theory is used to forecast the existence of all possible octet-rule cyclic and 

acyclic molecules formed from main-group atoms and having ionic and/or 

covalent bonding with orders up to three 
 
1. Introduction 
 
The octet rule is found to be “obeyed” by most main-group molecular structures, the more so 

in organic chemistry.  It should be possible to invert the problem—to assume the rule and then 

predict, using mathematical techniques, which molecules obey it.  Such prediction has been 

done, using simple algebra, for molecules with two,1 three,2 and four3 atoms in a way that can 

readily be extended to larger species.3  It has also been done with a somewhat more abstract 

algebra 4 and (in principle) using category theory.5  In the present paper, we build on previous 

work6-10 and use set theory for the determination of all possible main-group molecules—

cyclic or acyclic—having covalent and/or ionic bonding with orders 1, 2, or 3.  We begin with 

singly-bonded acyclic structures and move on to doubly and triply bonded structures; then we 

take up molecules with cycles.  A computer logic is included which should be more general 

than the extant computer programs that determine structures from libraries of fragments.4,11,12 



  

2. Mathematical analyses 
 
Let G  be any connected graph with maximal degree at most 4. Denote by ( )Gν  a quadruplet 

of numbers ( )1 2 3 4, , ,n n n n  where in  is the number of vertices of degree i  in G . 
 
Denote by ( )1 1,... ; ,...,k lp p q qΓ  the set of all simple graphs G  (i.e. graphs without loops or 

multiple edges) such that the set of vertices of G  is ( ) { }1 1,... , ,...,k lV G x x y y= ; that 

( )G i id x p=  for each 1,...,i k= ; that ( )G i id y q=  for each 1,...,i l= ; and that no two vertices 

ix  and jx  are adjacent.  Denote by ( ) ( )1 1 1 1,... ; ,..., ,... ; ,...,c k l k lp p q q p p q qΓ ⊆ Γ  the set of 

connected graphs in ( )1 1,... ; ,...,k lp p q qΓ . 
 
Let { }1,..., kX x x=  and { }1,..., lY y y= . Let 1S  and 2S  be two disjoint subsets of ( )V G . 

Denote by ( )1E S  the set of edges with both end-vertices in G and by ( )1 2,E S S  set of edges 

with one end-vertex in 1S  and other in 2S .  ( )1E S  is a special case of ( ) ( )( )E G E V G= .  Put 

( ) ( )( )1 1e S card E S=  and ( ) ( )( )1 2 1 2, ,e S S card E S S= . 
 
Let us prove an arbitrary lemma: 
 
Proposition 1. Let 1 1 0,... , ,...,k lp p q q N∈  such that 1 2 ... kp p p≥ ≥ ≥  and 1 2 ... lq q q≥ ≥ ≥ . 
Then  
 

( )1 1,..., ; ,...k lp p q qΓ ≠ ∅  
 if and only if  
 

1p l≤  and 
1

1pq ≥  and ( )1 12 1 1,..., ; 1,..., 1, ,..., 0k p p lp p q q q q+Γ − − ≠ . 
 
Proof: Suppose that 1p l≤  and 

1
1pq ≥  and ( )1 12 1 1,..., ; 1,..., 1, ,...,l p p lG p p q q q q+∈Γ − − , then it 

is sufficient to add to G  one vertex and connect it with vertices of degrees 
11 1,..., 1pq q− −  in 

order to obtain graph in ( )1 1,..., ; ,...k lp p q qΓ . 
 
Now suppose that ( )1 1,..., ; ,...k lp p q qΓ ≠ ∅ . Obviously, 1p l≤  and 

1
1pq ≥ . Let 

( )1 1,..., ; ,...k lG p p q q∈Γ  be graph such with maximal r  such that 1x  is adjacent to all vertices 

1,..., ry y . Distinguish two cases: 
 
CASE 1: 1r p= . 

In this case 1G p−  is isomorphic to element of ( )1 12 1 1,..., ; 1,..., 1, ,...,l p p lp p q q q q+Γ − −  which 
proves the claim. 
 
CASE 2: Suppose that 1x  is adjacent to 1,... ry y , but not to 1ry + .  Then 1x  is adjacent to some 

1r ty + + , 0t > . Since ( ) ( )1 1G r G r td y d y+ + +≥  and 1x  is adjacent to 1r ty + + , but not to 1ry + , it 



  

follows that there is a vertex v  such that ( )1rvy E G+ ∈  and ( )1r tvy E G+ + ∉ , but then 

( )1 1 1 1 1 1 1 1,..., ; ,...r t r r r t k lG x y vy x y vy p p q q+ + + + + +− − + + ∈Γ , which is in contradiction with 
maximality of r  in G . ■ 
 
 
Here, we restrict our analyses to the vertices with degrees 1,2,3 and 4 . The degree sequence 
( ) ( )1 2, ,..., 4,..., 4,3,...,3, 2,..., 2,1,...,1kp p p =  can be compactly written as ( )1 2 3 4, , ,m m m m , 
which simply means that there are m1 copies of value 1, m2 copies of value 2, and so on. We 
write this correspondence ( ) ( )1 2 1 2 3 4, ,..., , , ,kp p p m m m m↔  and analogously 

( ) ( )1 2 1 2 3 4, ,..., , , ,kq q q n n n n↔ .  
 
Here, we always assume that 1 2 ... kp p p≥ ≥ ≥   and that 1 2 ... lq q q≥ ≥ ≥ . Also, we compactly 
write ( ) ( ) ( )( )1 1 1 2 3 4 1 2 3 4,..., ; ,..., , , , ; , , ,k lp p q q m m m m n n n nΓ = Γ .  
 
From Lemma 1 directly follows 
 
Proposition 2. Let 1 2 3 4 1 2 3 4 0, , , , , , ,m m m m n n n n N∈  and let 4 1n ≥  and let at least one of 
numbers 1 2 3, ,m m m  and 4m  be different form 0. Then ( ) ( )( )1 2 3 4 1 2 3 4, , , ; , , ,m m m m n n n nΓ ≠ ∅  
if and only if one of the following holds: 
 

1) 1 2 3 4 42 3 4m m m m n+ + + ≤  and ( ) 1 2 3 1 2 3 4

4 1 2 3 4

, , 2 3 4 ,
0,0,0,0 ; 0

2 3 4
n n n m m m m

n m m m m
⎛ + + + + ⎞⎛ ⎞

Γ ≠⎜ ⎟⎜ ⎟− − − −⎝ ⎠⎝ ⎠
; 

2) 1 4 1 2 3 42 3 4p n m m m m≤ < + + +  and  

    1 2 1 2 4 3 4
1 1

, ,..., ; , , 2 ,0 0
j j

j j k i i
i i

p p p n n n p n n p+ +
= =

⎛ ⎞⎛ ⎞
Γ − + + − ≠⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑ , where j  is the smallest 

      number such that 4
1

j

i
i

p n
=

≥∑ ;  
3) 4 1 1 2 3 4n p n n n n< ≤ + + +  and ( )1 1 12 3 1 2 1 2, ,..., ; 1, 1,..., 1, , ,..., 0k p p p lp p p q q q q q q+ +Γ − − − ≠ .■ 

 
 
Proposition 3. Let 1 2 3 4 1 2 3 0, , , , , ,m m m m n n n N∈  and let 3 1n ≥  and let at least one of numbers 

1 2 3, ,m m m  and 4m  be different form 0. Then ( ) ( )( )1 2 3 4 1 2 3, , , ; , , ,0m m m m n n nΓ ≠ ∅  if and only 
if one of the following holds: 
 

1) 1 2 3 4 32 3 4m m m m n+ + + ≤  and ( ) 1 2 1 2 3 4

3 1 2 3 4

, 2 3 4 ,
0,0,0,0 ; 0

2 3 4 ,0
n n m m m m
n m m m m

⎛ + + + + ⎞⎛ ⎞
Γ ≠⎜ ⎟⎜ ⎟− − − −⎝ ⎠⎝ ⎠

; 

2) 1 3 1 2 3 42 3 4p n m m m m≤ < + + +  and 

     1 2 1 3 2 3
1 1

, ,..., ; , 2 ,0,0 0
j j

j j k i i
i i

p p p n n p n n p+ +
= =

⎛ ⎞⎛ ⎞
Γ − + + − ≠⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑ , where j  is the smallest 



  

     number such that 3
1

j

i
i

p n
=

≥∑ ; 

3) 3 1 1 2 3n p n n n< ≤ + +  and ( )1 1 12 3 1 2 1 2, ,..., ; 1, 1,..., 1, , ,..., 0k p p p lp p p q q q q q q+ +Γ − − − ≠ . ■ 
 
 
Proposition 4. Let 1 2 3 4 1 2 0, , , , ,m m m m n n N∈  and let 2 1n ≥  and let at least one of numbers 

1 2 3, ,m m m  and 4m  be different form 0. Then ( ) ( )( )1 2 3 4 1 2, , , ; , ,0,0m m m m n nΓ ≠ ∅  if and only 
if one of the following three conditions holds: 
 

1) 1 2 3 4 22 3 4m m m m n+ + + ≤  and ( ) 1 1 2 3 4

2 1 2 3 4

2 3 4 ,
0,0,0,0 ; 0

2 3 4 ,0,0
n m m m m

n m m m m
⎛ + + + + ⎞⎛ ⎞

Γ ≠⎜ ⎟⎜ ⎟− − − −⎝ ⎠⎝ ⎠
; 

2) 1 2 1 2 3 42 3 4p n m m m m< < + + +  and 1 2 1 2
1

, ,..., ; 2 ,0,0,0 0
j

j j k i
i

p p p n n p+ +
=

⎛ ⎞⎛ ⎞
Γ + − ≠⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ , 

     where j  is the smallest number such that 2
1

j

i
i

p n
=

≥∑ . 

3) 2 1 1 2n p n n≤ ≤ +  and ( )1 1 12 3 1 2 1 2, ,..., ; 1, 1,..., 1, , ,..., 0k p p p lp p p q q q q q q+ +Γ − − − ≠ .■ 
 
It can be easily seen that: 
 
Proposition 5. Let 1 2 3 4 1 0, , , ,m m m m n N∈  and let 1 1n ≥ . Then 

( ) ( )( )1 1 2 3 4,0,0,0 ; , , ,n m m m mΓ ≠ ∅  if and only if 1 1 2 3 42 3 4n m m m m− − − −  is an even non-
negative integer.■ 
 
The following theorem is given in Reference 7 (recall that the molecular graph is a simple 
connected graph): 
 
Theorem A. Let 1 2 3 4, ,  and n n n n  be nonnegative natural numbers such that 

1 2 3 4 3n n n n+ + + ≥ . There is a molecular graph G such that ( ) ( )1 2 3 4, , ,G n n n nν =  if and only 

if the following four conditions hold: 

1) 3 4 12 2n n n+ ≥ − ; 

2) 3 43 4 1
2

3 4
22

n nn n n
n

++ − ⎛ ⎞
− ≤ ⎜ ⎟

⎝ ⎠
; 

3) 1 3n n+  is an even number; 

4) If 3 4 1n n+ =  then 2 3 4 13 4n n n n≥ + − . 

 
From here we can deduce: 
 



  

Proposition 6.  Let 1 2 3 4, ,  and n n n n  be nonnegative natural numbers such that 

1 2 3 4 3n n n n+ + + ≥ . There is a simple graph G such that ( ) ( )1 2 3 4, , ,G n n n nν =  if and only if 

the following three conditions hold: 

1) 3 43 4 1
2

3 4
22

n nn n n
n

++ − ⎛ ⎞
− ≤ ⎜ ⎟

⎝ ⎠
; 

2) 1 3n n+  is an even number; 

3) If 3 4 1n n+ =  then 2 3 4 13 4n n n n≥ + − . 

 

Proof: Necessity can be proved completely by analogy to the proof of Theorem A. Let us 

prove sufficiency. Distinguish two cases: 

CASE 1: 3 4 12 2n n n+ ≥ − . 

This case follows from Theorem A. 

CASE 2: 3 4 12 2n n n+ < − . 

Note that 1 3 42 3n n n− −  is an even number larger then 2. Let graph G  consist of paths with 

2 3 4 2n n n+ + +  edges and 1 3 42 2
2

n n n− − −  isolated edges.  Pick arbitrarily 3n  vertices of 

degree 2 in  the set A  and 4n  vertices of degree 2 in B . Graph 'G  is created from graph G  

by adding a single pendant vertex to each vertex in A  and 2 pendant vertices to each vertex in 

B . It can be easily seen that ( )1 2 3 4' 0,0,0,0; , , ,G n n n n∈Γ .■ 

 
Proposition 7. Let 1 2 3 4 1 2 3 4 0, , , , , , ,m m m m n n n n N∈  and let ( )1 2 3 4 1 2 3 4, , , ; , , ,m m m m n n n nΓ ≠ ∅ . 

Then ( )1 2 3 4 1 2 3 4, , , ; , , ,c m m m m n n n nΓ ≠ ∅  if and only if 3 3 4 4 1 12 2 2m n m n m n+ + + ≥ + − . 
 
Proof: Suppose that ( )1 2 3 4 1 2 3 4, , , ; , , ,cG m m m m n n n n∈Γ . Then number of edges in G  is equal 

to  1 1 2 2 3 3 4 42 2 3 3 4 4
2

m n m n m n m n+ + + + + + + , hence 

 
1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4
2 2 3 3 4 4 1

2
m n m n m n m n m n m n m n m n+ + + + + + +

≥ + + + + + + + − . 

 
Which implies 3 3 4 4 1 12 2 2m n m n m n+ + + ≥ + − . Now suppose that 

( )1 2 3 4 1 2 3 4, , , ; , , ,c m m m m n n n nΓ ≠ ∅  and that 3 3 4 4 1 12 2 2m n m n m n+ + + ≥ + − but that 

( )1 2 3 4 1 2 3 4, , , ; , , ,c m m m m n n n nΓ =∅ . Let ( )1 2 3 4 1 2 3 4, , , ; , , ,G m m m m n n n n∈Γ  be a graph with 
the smallest number of components. From 3 3 4 4 1 12 2 2m n m n m n+ + + ≥ + − , it follows that at 



  

least one component in G  contains a cycle. Let a bv y  (note that each edge has at least one 
vertex in y ) be an edge of that cycle and let c dv y  be an edge of some other component of G . 
Note that  
 

( )1 2 3 4 1 2 3 4, , , ; , , ,a b c d b c d aG v y v y y v y v m m m m n n n n− − + + ∈Γ  
 
has a smaller number of components that G . This is a contradiction. ■ 
 
3. Algorithm 
 
Propositions 1-7 yield a simple recursive algorithm which gives the answer to the question 
whether the set ( )1 2 3 4 1 2 3 4, , , ; , , ,c m m m m n n n nΓ  is empty or not. We have the main function 
IsEmpty, the recursive procedure RecIsEmpty and the function Collect that transforms the 
ordinary sequence of numbers ( )1,..., kp p  or ( )1,..., lq q  into compact sequences ( )1 2 3 4, , ,n n n n  

and ( )1 2 3 4, , ,m m m m . 
 
IsEmpty  ( )1 2 3 3 1 2 3 4, , , ; , , ,m m m m n n n n  
 
1) If 3 3 4 4 1 12 2 2m n m n m n+ + + < + −  then return Set is empty 
2) Else return RecIsEmpty ( )1 2 3 3 1 2 3 4, , , ; , , ,m m m m n n n n  
 
 
RecIsEmpty ( )1 2 3 3 1 2 3 4, , , ; , , ,m m m m n n n n  
 
If 1 2 3 4 0m m m m= = = =  then 
Begin 

If 3 43 4 1
2

3 4
22

n nn n n n
⎡ + ⎤⎛ ⎞+ −

− ≤⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 and [ 1 3n n+  is an even number] and 

[If 3 4 1n n+ =  then 2 3 4 13 4n n n n≥ + − ] then return Set is non-empty 

Else return Set is empty 
 End 
 
Else if 2 3 4 0n n n= = = then 
Begin 

If 1 1 2 3 42 3 4n m m m m− − − −  is an even non-negative integer return Set is non- 
Empty 

 Else return Set is empty 
End 
 
Else if 3 4 0n n= =  then 
Begin 

If 1 2 3 4 22 3 4m m m m n+ + + ≤  then return  



  

RecIsEmpty ( )1 1 2 3 4 2 1 2 3 40,0,0,0; 2 3 4 , 2 3 4 ,0,0n m m m m n m m m m+ + + + − − − − ; 
Else if 1 2 1 2 3 42 3 4p n m m m m≤ < + + +  then return  

RecIsEmpty ( )1 2 1 2
1

, ,..., ; 2 ,0,0,0
j

j j k i
i

Collect p p p n n p+ +
=

⎛ ⎞
+ −⎜ ⎟

⎝ ⎠
∑   

where j  is the smallest number such that 2
1

j

i
i

p n
=

≥∑ . 

Else if 2 1 1 2n p n n< ≤ +  then return  

RecIsEmtpy
( )

( )1 1 1

2 3

1 2 1 2

, ,..., ;

1, 1,..., 1, , ,...,
k

p p p l

Collect p p p

Collect q q q q q q+ +

⎛ ⎞
⎜ ⎟
⎜ ⎟− − −⎝ ⎠

. 

 Else return Set is empty 
End 
 
Else if 4 0n =  
Begin 
 If 1 2 3 4 32 3 4m m m m n+ + + ≤  then return  

RecIsEmpty ( )1 2 1 2 3 4 3 1 2 3 40,0,0,0; , 2 3 4 , 2 3 4 ,0n n m m m m n m m m m+ + + + − − − −  
Else if 1 3 1 2 3 42 3 4p n m m m m≤ < + + +  then return 

RecIsEmpty ( )1 2 1 3 2 3
1 1

, ,..., ; , 2 ,0,0 0
j j

j j k i i
i i

Collect p p p n n p n n p+ +
= =

⎛ ⎞
− + + − ≠⎜ ⎟

⎝ ⎠
∑ ∑  

where j  is the smallest number such that 3
1

j

i
i

p n
=

≥∑ ; 

Else if 3 1 1 2 3n p n n n< ≤ + +  then return  

RecIsEmpty
( )

( )1 1 1

2 3

1 2 1 2

, ,..., ;

1, 1,..., 1, , ,...,
k

p p p l

Collect p p p

Collect q q q q q q+ +

⎛ ⎞
⎜ ⎟
⎜ ⎟− − −⎝ ⎠

 

 Else return Set is empty 
End 
 
Else 
Begin 

If 1 2 3 4 42 3 4m m m m n+ + + ≤  then return  

RecIsEmpty 1 2 3 1 2 3 4

4 1 2 3 4

0,0,0,0; , , 2 3 4 ,
2 3 4

n n n m m m m
n m m m m

+ + + +⎛ ⎞
⎜ ⎟− − − −⎝ ⎠

; 

If 1 4 1 2 3 42 3 4p n m m m m≤ < + + +  then return  

RecIsEmpty ( )1 2 1 2 4 3 4
1 1

, ,..., ; , , 2 ,0
j j

j j k i i
i i

Collect p p p n n n p n n p+ +
= =

⎛ ⎞
− + + −⎜ ⎟

⎝ ⎠
∑ ∑  

where j  is the smallest number such that 4
1

j

i
i

p n
=

≥∑ ; 

If 4 1 1 2 3 4n p n n n n< ≤ + + +  then return  
 



  

 RecIsEmpty
( )

( )1 1 1

2 3

1 2 1 2

, ,..., ;

1, 1,..., 1, , ,...,
k

p p p l

Collect p p p

Collect q q q q q q+ +

⎛ ⎞
⎜ ⎟
⎜ ⎟− − −⎝ ⎠

 

 Else return Set is empty 
End 
 
It can be easily seen that the recursion RecIsEmpty can be referenced at most five times 
during the execution of the program, hence the algorithm works very efficiently (in a constant 
time) for graphs of arbitrarily large size. 
 
4. Molecules with a single covalent bonds and/or single ionic bonds 
 
Suppose that we have eight types of atoms: metals with 1,2,3 and 4 electrons in the last shell 
(valences 1, 2, 3, and 4 as in Li, Be, B, and C) and non-metals with 7, 6, 5, and 4 electrons in 
the last shell (valences 7, 6, 5, and 4, that is, having 1, 2, 3, and 4 electrons missing in the last 
orbital shell, as in F, O, N, and C). Denote the numbers of metal atoms by 1 2 3, ,me me me  and 

4me and the numbers of non-metal atoms with by 1 2 3, ,nm nm nm  and 4nm .  
 
Metal atoms are capable only of donating electrons to participate in ionic bonding. On the 
other hand non-metals are capable of accepting electrons to participate in ionic bonding, and 
also of forming covalent bonds. A molecule is stable if each atom has its last orbital shell 
filled with electrons. In ionic bonding, metal atoms obtain this stability by donating all 
electrons and non-metals obtain this stability by accepting the necessary numbers of electrons 
to fill their valence electron shell.  A simple row-2 example is [Li]+[F]-.   
 
In a molecule with only non-metal atoms, the atoms share outer-shell electrons such that there 
are eight electrons associated with each atom (counting both electrons in each bond).  If the 
atoms are identical then the bond is strictly covalent; F2 is a simple example.  If the atoms 
differ then the bond is technically not a strict covalent bond but is often (as in this paper) 
referred to with that term.  A row-2 example is F-O-F.    
 
Van der Waals, hydrogen, and other bondings are not considered. 
 
We are interested if there is molecule with only single covalent bonds and single ionic bonds 
that corresponds to numbers 1 2 3, ,me me me , 4me , 1 2 3, ,nm nm nm  and 4nm . We can solve this 
using our algorithm. We just calculate  
 

IsEmpty ( )1 2 3 4 1 2 3 4, , , , , , ,me me me me nm nm nm nm  
 
and find out if there is molecule with the required properties. If we are interested only in 
molecules without cycles then we need to add the following condition: 
 

1 1 3 3 4 42 2 2me nm me nm me nm+ = + + + + . 
 
5. Acyclic molecules with a single and/or double covalent bonds and/or 
single and/or double ionic bonds  
 



  

Denote ( )Gν  as in Section 1. Denote by 12Γ  set of all connected graphs that have only single 
and/or double bonds and have no loops or nontrivial cycles (we assume that cycle is trivial if 
it consists of pair of vertices connected by double bond).  
 
The following theorem is given in Reference 9: 
 
Theorem B. Let 1 2 3 4 0, , ,n n n n N∈ . Then, there is a graph 12G∈Γ  such that 

( ) ( )1 2 3 4, , ,G n n n nν =  if and only if 2 3 4 0n n n= = =  and 1 2n = ; or the following five 

conditions hold: 

1) n1 ≡ n3 (mod 2) 

2) n1 ≤  n3  + 2 n4  + 2 

3) if n3 = 0, then n1  + 2 n2 ≥  4 

4) if n3 ≥  1, then n1  + n2 ≥  2 

5) if n1 = n3 = 0 then n2 = 2. 

 

Denote by ( ) ( ) ( )( )12 1 1 12 1 2 3 4 1 2 3 4,... ; ,..., , , , ; , , ,k kp p q q m m m m n n n nΓ = Γ  set of all connected i.e. 

graphs without loops and nontrivial cycles and only with single and double bonds such that 

set of vertices of G  is ( ) { }1 1,... , ,...,k lV G x x y y=  that ( )G i id x p= , for each 1,...,i k= ; 

( )G i id y q=  for each 1,...,i l=  and no two vertices ix  and jx  are adjacent. 

 
Let us prove: 
 
Theorem 8. Let 1 2 3 4 1 2 3 4 0, , , , , , ,m m m m n n n n N∈ . Then,  
 

( ) ( )( )12 1 2 3 4 1 2 3 4, , , ; , , ,m m m m n n n nΓ ≠ ∅  
 
if and only if 1 2 2 3 3 4 4 10, 2m n m n m n m n= = = = = = = =  or the following six conditions all 
hold: 
 
1) 1 2 3 4 1 2 3 42 3 4 2 3 4m m m m n n n n+ + + ≤ + + +  
 
2) 1 1 3 3n m n m+ ≡ +   (mod 2) 
 
3) 1 1 3 3 4 42 2 2n m n m n m+ ≤ + + + +  
 
4) if 3 3 0n m= = , then 1 1 2 22 2 4n m n m+ + + ≥  
 
5) if 3 3 1n m+ ≥ , then 1 1 2 2 2n m n m+ + + ≥  



  

 
6) 1 1 3 3 2 20 2n m n m n m= = = = ⇒ + =  
 
Proof: First, suppose that there is ( ) ( )( )12 1 2 3 4 1 2 3 4, , , ; , , ,G m m m m n n n n∈Γ . Since no two 
vertices ix  and jx  adjacent, if follows that 1 2 3 4 1 2 3 42 3 4 2 3 4m m m m n n n n+ + + ≤ + + +  and the 
the remaining follows from the Theorem B. Now, let us prove the opposite implication. 
 
If 1 2 2 3 3 4 4 10, 2m n m n m n m n= = = = = = = = , the claim is trivial. Hence, suppose that claims 
1) – 6) follow. From Theorem B, it follows that there is graph 12G∈Γ  such that 

( ) ( )1 1 2 2 3 3 4 4, , ,G n m n m n m n mν = + + + + .  
 
Denote by ( ) ( )( )12 1 2 3 4 1 2 3 4' , , , ; , , ,m m m m n n n nΓ  the set of all connected i.e. graphs without 
loops and only with single and double bonds such that set of vertices of G  is 
( ) { }1 1,... , ,...,k lV G x x y y=  that ( )G i id x p= , for each 1,...,i k= ; ( )G i id y q=  for each 

1,...,i l= .  Obviously, ( ) ( )( )12 1 2 3 4 1 2 3 4' , , , ; , , ,m m m m n n n nΓ  contains graph isomorphic to G , 

hence ( ) ( )( )12 1 2 3 4 1 2 3 4' , , , ; , , ,m m m m n n n nΓ ≠ ∅ . Let ( ) ( )( )12 1 2 3 4 1 2 3 4' ' , , , ; , , ,G m m m m n n n n∈Γ  

be the graph in ( ) ( )( )12 1 2 3 4 1 2 3 4' , , , ; , , ,m m m m n n n nΓ  with the smallest value of ( )e X . If 

( ) 0e X = , then ( ) ( )( )12 1 2 3 4 1 2 3 4' , , , ; , , ,G m m m m n n n n∈Γ  and theorem is proved. 
 
Hence, suppose that ( ) 0e X ≠ . Since,  1 2 3 4 1 2 3 42 3 4 2 3 4m m m m n n n n+ + + ≤ + + + , it follows 

that ( ) 0e Y ≠ , too. Denote ( )a bx x E X∈  and ( )c dy y E Y∈ .  Denote by ( )D G  set of double 
bonds in G . Distinguish 4 cases: 
 
CASE 1: ( ),a c b dx y x y D G∉ . 

Graph ( ) ( )( )12 1 2 3 4 1 2 3 4' , , , ; , , ,a b c d a c b dG x x y y x y x y m m m m n n n n− − + + ∈Γ ≠ ∅  has smaller 

value of ( )e Y , which is contradiction. 

CASE 2: ( ),b c a dx y x y D G∉ . 

Graph ( ) ( )( )12 1 2 3 4 1 2 3 4' , , , ; , , ,a b c d b c a dG x x y y x y x y m m m m n n n n− − + + ∈Γ ≠ ∅  has smaller 

value of ( )e Y , which is contradiction. 

CASE 3: a cx y , b cx y ( )D G∈  or a cx y , a dx y ( )D G∈  or b dx y , b cx y ( )D G∈  or b dx y , 

a dx y ( )D G∈ . 
In the first case cy  has degree 5; in the second ax  has degree 5; in the third case bx  has degee 
5 and in the fourth case dy  has degree 5. Hence, in each case a contradiction is obtained. 
 
All the cases are exhausted and the theorem is proved.■ 
 
Now a direct application to molecular structure will be made. 
 
Denote the atoms by 1 2 3, ,me me me , 4me , 1 2 3, ,nm nm nm  and 4nm  as in Section 3. We are 
interested if there is molecule without rings, having only single and/or double covalent bonds 



  

and/or only single and/or double ionic bonds, and achieving stability for each atom.  We just 
apply the Theorem 8, i.e. such a molecule exists if and only if one of the following three 
condition sets holds.  The examples are all drawn from molecules with group-2 atoms, 
generalization to molecules with heavier atoms is not difficult.1 
 
1) 1 2 3 4 2 3 4 20, 2me me me me nm nm nm nm= = = = = = = = (as in O2), or 
 
2) 2 3 4 2 3 4 1 10, 1me me me nm nm nm me nm= = = = = = = =  (as in [Li]+[F]-), or  
 
3) all of the following six relations hold: 
 
    3.1) 1 2 3 4 1 2 3 42 3 4 2 3 4me me me me nm nm nm nm+ + + ≤ + + + (Li-O-Li and Li-O-F; O=C=O;  
           Li-N=O and F-N=O; kite BeONLi) 
 
    3.2) 1 1 3 1me nm me nm+ ≡ +   (mod 2) (Li-O-Li and Li-O-F; Li-N=O and F-N=O; kites 
           OONLi and OONF; kites BeONLi and BeONF, where the beryllium atom donates 
           electrons to the oxygen and nitrogen atoms) 
 
    3.3) 1 1 5 5 4 42 2 2me nm me nm me nm+ ≤ + + + +  (Li-O-Li and Li-O-F; Li-O-O-Li and 
           Li-O-O-F; Li2C=CLi2) 
 
    3.4) if 3 3 0me nm= = , then 1 1 2 22 2 4me nm me nm+ + + ≥ (Li-O-Li, Li-O-F, and O=C=O  
            satisfy the equality) 
 
    3.5) if 3 3 1me nm+ ≥ , then 1 1 2 2 2me nm me nm+ + + ≥  (Li-N=O and F-N=O satisfy the 
           equality;; kites OONLi and OONF and BeONLi satisfy the inequality) 
 
    3.6) 1 1 3 3 2 20 2me nm me nm me nm= = = = ⇒ + =  (the simplest case is [Be]2+[O]2-) 
 
 
    

6. Acyclic molecules with a single and/or double and/or triple covalent  

and /or ionic bonds  
 
The following theorem is given in Reference 9, noting that the first inequality in line 3) is due 
to a missprint in Lemma 18 and hence that the following theorem contains n1 = 2 instead of 

1 3 2n n+ = : 
 
Theorem C. Let n1, n2, n3, n4 ∈  N0. There is a graph G  ∈  Γ123 if and only if one of the 
following four condition sets holds: 
 
1) n1 =  n2  = n4  = 0 and n3  = 2, or 
 
2) n1 =  n3  = 0 and n2  = 2, or 
 

                                                 
1 The examples provided for these statements should make it possible for the reader to supply examples for 
analogous statements in the following sections. 



  

3) n1 + n3  =  2, n2  = 0, n4  ≥   n3 and n4 ≡ n3 (mod 2), or 
 
4) The fourth condition is that all of the following five relations hold: 
 
    4.1) n1  ≡ n3   (mod 2) 
 
    4.2) n1 ≤  n3  + 2 n4 + 2 
 
    4.3) if n3  = 0, then n1 + 2 n2 ≥   4 
 
    4.4) if n3  ≥  1, then n1 + n2 ≥   max {2 – n4, 3 – n3, 2 – (n3 + 2 n4 + 2 – n1) / 4} 
 
    4.5) n1 + n3 > 1. 
 
To make direct chemical application, this theorem can be utilized to give necessary and 
sufficent conditions on the numbers 1 2 3, ,me me me , 4me , 1 2 3, ,nm nm nm  , 4nm  for the existence 
of molecules with only single and/or double and/or triple covalent bonds and only single 
and/or double and/or triple ionic bonds that corresponds to these numbers.  
It is necessary and sufficient that the numbers satisfy  
 

1 2 3 4 1 2 3 42 3 4 2 3 4me me me me nm nm nm nm+ + + ≤ + + +   
 
and one of the following four conditions: 
 
1) 1 1 2 2 4 4 0me nm me nm me nm= = = = = =  and 3 3 2me nm+ =  or 
 
2) 1 1 3 3 0me nm me nm= = = =  and 2 2 2ne nm+ =  
 
3) 1 1 3 3 2me nm me nm+ + + = , 2 2 0me nm= = , 4 4 3 3me nm me ne+ ≥ +  and 

( )4 4 3 3 mod 2me nm me ne+ ≡ +  
 
4) This fourth condition is that all of the following five relations hold: 
 
    4.1) ( )1 1 3 3 mod 2me nm me nm+ ≡ +  
 
    4.2) 1 1 3 3 4 42 2 2me nm me nm me nm+ ≤ + + + +  
 
    4.3) if 3 3 0me nm= = , then 1 1 2 22 2 4me nm me nm+ + + ≥  
 
    4.4) if 3 3 1me nm+ ≥  then  

           
( )

4 4 3 3
1 1 2 2

3 3 4 4 1 1

2 ,3 ,2
max

2 2 / 4
me nm me nm

me nm me nm
me nm me nm me nm

− − − − −⎧ ⎫⎪ ⎪+ + + ≥ ⎨ ⎬+ + + + − −⎪ ⎪⎩ ⎭
 

    4.5) 1 1 3 3 1me nm me nm+ + + >  
 
 



  

7. Molecules that have bond orders up to three and that may contain cycles 
 
The following theorems given in Reference 10 can be utilized in a completely analogous way 
for these molecules: 
 
Theorem D. Let 1 2 3 4 0, , ,n n n n N∈ . Then, ( )12 1 2 3 4, , ,o n n n nΓ ≠ ∅  if and only if the following 
holds: 
1) 1 3n n≡  (mod 2) 
 
2) 1 3 42 2n n n≤ + +  
 
3) 1 2 3 42 2 3 4n n n nΔ ≤ + + +  
 
4) 1 2 3 42 ' 2 3 4 4n n n n2Δ + Δ ≤ + + + + . 
 
Theorem E. Let 1 2 3 4 0, , ,n n n n N∈ . Then, ( )123 1 2 3 4, , ,o n n n nΓ ≠ ∅  if and only if the following 
holds: 
1) 1 3n n≡  (mod 2); 
2) 1 3 42 2n n n≤ + + ; 
3) 1 2 3 42 2 3 4n n n nΔ ≤ + + + ; 
4) 1 2 3 42 ' 2 3 4 6n n n n2Δ + Δ ≤ + + + + . 
 
where Δ  is maximal degree of the graph and 'Δ  is second maximal degree of the graph and 

12
oΓ  and 123

oΓ  are defined analogously as above. 
 
The results can be stated for in a chemically relevant way as follows: 
 
CASE 1) There is molecule with only single and/or double covalent bonds and only single 
and/or double ionic bonds that corresponds to numbers 1 2 3, ,me me me , 4me , 1 2 3, ,nm nm nm  and 

4nm  if and only if these five conditions hold: 
 
1) 1 2 3 4 1 2 3 42 3 4 2 3 4me me me me nm nm nm nm+ + + ≤ + + +  
 
2) 1 1 3 3nm me nm me+ ≡ +   (mod 2) 
 
3) 1 1 3 3 4 42 2 2nm me nm me nm me+ ≤ + + + +  
 
4) 1 1 2 2 3 3 4 42 2 2 3 3 4 4me nm me nm me nm me nmΔ ≤ + + + + + + +  
 
5) 1 1 2 2 3 3 4 42 2 ' 2 2 3 3 4 4 4me nm me nm me nm me nmΔ + Δ ≤ + + + + + + + + . 
 
CASE 2) There is molecule with single and/or double and/or triple covalent bonds and single 
and/or double and/or triple ionic bonds that corresponds to numbers 1 2 3, ,me me me , 4me , 

4 5 6, ,nm nm nm  and 7nm  if and only if 



  

 
1) 1 2 3 4 1 2 3 42 3 4 2 3 4me me me me nm nm nm nm+ + + ≤ + + +  
 
2) 1 1 3 3nm me nm me+ ≡ +   (mod 2) 
 
3) 1 1 3 3 4 42 2 2nm me nm me nm me+ ≤ + + + +  
 
4) 1 1 2 2 3 3 4 42 2 2 3 3 4 4me nm me nm me nm me nmΔ ≤ + + + + + + +  
 
5) 1 1 2 2 3 3 4 42 2 ' 2 2 3 3 4 4 6me nm me nm me nm me nmΔ + Δ ≤ + + + + + + + + . 
 
 
8. Summary 
 
The theory presented here gives the necessary and sufficient conditions for the existence of a 
molecule which has 
 

• single and/or double and/or triple covalent bonds, and/or 
 

• with single and/or double and/or triple ionic bonds, and 
 

• exactly eight electrons in the valence shell of every atom (counting those that 
possessed before bonding and those that it gained or lost as a result of the bonding). 

 
It is worthwhile to note what is not being claimed: 
 

• That only octet molecules exist, 
 

• That octet molecules are necessarily more stable under usual laboratory conditions 
than non-octet molecules, 

 
• That any given octet molecule will be observable under usual laboratory conditions. 

 
The synthesis of octet molecules, even if it requires working under unusual conditions, should 
be of interest for the following (rather esoteric) reasons: 
 

• These working conditions, unusual or not, might after analysis be found to follow 
interesting patterns, 

 
• The distributions of the molecules in their multidimensional spaces, known for 

diatomic1 and triatomic2 molecules, might be generalized to higher spaces.    
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