
Southern Adventist University
KnowledgeExchange@Southern

Faculty Works Physics and Engineering Department

3-14-2008

Kronecker-Product Periodic Systems of Small Gas-
Phase Molecules and the Search for Order in
Atomic Ensembles of Any Phase
Ray Hefferlin

Follow this and additional works at: https://knowledge.e.southern.edu/facworks_physics

This Article is brought to you for free and open access by the Physics and Engineering Department at KnowledgeExchange@Southern. It has been
accepted for inclusion in Faculty Works by an authorized administrator of KnowledgeExchange@Southern. For more information, please contact
jspears@southern.edu.

Recommended Citation
Hefferlin, Ray, "Kronecker-Product Periodic Systems of Small Gas-Phase Molecules and the Search for Order in Atomic Ensembles of
Any Phase" (2008). Faculty Works. 10.
https://knowledge.e.southern.edu/facworks_physics/10

https://knowledge.e.southern.edu?utm_source=knowledge.e.southern.edu%2Ffacworks_physics%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://knowledge.e.southern.edu/facworks_physics?utm_source=knowledge.e.southern.edu%2Ffacworks_physics%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://knowledge.e.southern.edu/physics?utm_source=knowledge.e.southern.edu%2Ffacworks_physics%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://knowledge.e.southern.edu/facworks_physics?utm_source=knowledge.e.southern.edu%2Ffacworks_physics%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://knowledge.e.southern.edu/facworks_physics/10?utm_source=knowledge.e.southern.edu%2Ffacworks_physics%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jspears@southern.edu


 Combinatorial Chemistry & High Throughput Screening, 2008, 11, 691-706 691

 1386-2073/08 $55.00+.00 © 2008 Bentham Science Publishers Ltd.

Kronecker-Product Periodic Systems of Small Gas-Phase Molecules and 
the Search for Order in Atomic Ensembles of Any Phase 
Ray Hefferlin*

Southern Adventist University, Collegedale, Tennessee 37315, USA 

Abstract: The periodic law, manifested in the chart of the elements, is so fundamental in chemistry and related areas of 
physics that the question arises “Might periodicity among molecules also be embodied in a periodic system?” This review 
paper details how a particular periodic system of gas-phase diatomic molecules, allowing for the forecasting of thousands 
of new data, was developed. It can include ionized and even quarked-nuclei molecules and it coincides with locality (av-
eraging) and the additivity found in some data; it has interesting vector properties, and it may be related in challenging 
ways to partial order. The review then explains how periodic systems for triatomic and four-atomic species are evolving 
along a similar path. The systems rest largely upon exhaustive comparisons of tabulated data, relate to some extent to the 
octet rule, and include reducible representations of the dynamic group SO(4) in higher spaces. Finally, the paper shows 
how periodicity can be quantified in data for larger molecules. Data for properties of homologous or substituted mole-
cules, in any phase, are quantified with a vector index, and the index for one set can be transformed into that for another 
set. 

1. INTRODUCTION 

 Here we present a review of a quantitative search for 
periodicity in molecules. Successes in the work, which has 
spanned over three decades, are very largely attributable to 
the author’s students at Southern Adventist University 
(SAU) and to the intermittent but crucial collaborations of 
numerous colleagues around the world. These collaborations 
are peculiar in that only a few of the participants are chem-
ists, that some aspects of the chemistry were therefore re-
phrased, and that some of the work was done by quantifying 
patterns seen graphically. 
 The SAU group has conceived a paradigm that constructs 
periodic systems for molecules with any number of atoms. 
The system for diatomic molecules has been exhaustively 
tested and has predictive capability; the system for triatomics 
has been partially tested and has some predictive power. 
Theoretical support is provided by reducible representations, 
in the Hilbert spaces H (2) and H (3) of diatomic and tria-
tomic molecules, of the group SO(4) multiplied (in the 
Kronecker sense) once or twice by itself [H (1) is the space 
of atoms]. Included in the paradigm is the concept that atoms 
maintain enough of their individualities to “own” their va-
lence-shell electrons, and to echo their element-chart perio-
dicity, when bonded into molecules. 
 The initial restriction to molecules in the gas phase is 
then relaxed in a survey of triatomic molecules in any phase. 
Data for still larger molecules, in any phase, are being ap-
proached one molecular similarity class after another — such 
as transition-metal oxides or halogen-substituted benzenes. 
This approach is due to the scarcity of data. 
 A vector index is formulated for each similarity class and 
the index for one class can be transformed into that for any 
other class by means of dyadics; both the indices and the 
dyadics show clear footprints of periodicity. 

*Address correspondence to this author at the Southern Adventist Univer-
sity, Collegedale, Tennessee 37315, USA; E-mail: hefferln@southern.edu 

 Other efforts to classify molecules consistently with 
atomic periodicity exist, many having exquisite beauty. They 
have been described elsewhere [1,2] and are largely omitted 
in this parochial review at the request of the editor. This 
review is roughly chronological, but since many of the topics 
overlap and contribute to each other, every step (and mis-
step) is not detailed. We hope that the brief paragraphs on 
partial order in Section 11.1 will suggest new areas for re-
search into partial order, which is so appropriate for this 
issue. 

2. BACKGROUND: THE NEED FOR MOLECULAR 
DATA 

 That data are needed is hardly a new realization, but an 
illustration tightly related to this review will be helpful. As-
trophysicists attribute the origin of stellar luminosity to nu-
clear fusion reactions. Testing their models includes spectro-
scopic measurement of the numbers of atoms and molecules 
per unit area on the stellar surface. This measurement, in 
turn, requires knowing the ability of the species to absorb 
light coming up from the inside of the star at a given fre-
quency (as well as knowing several other factors such as the 
temperature). This ability to absorb is named, for atoms, the 
f-value (oscillator strength) or, with different parameters, the 
Einstein absorption coefficient. For molecules, there are 
variously-defined band f-values and, also with different pa-
rameters, transition moments. In general, all of these — as 
well as state lifetimes — are called intensity constants. 
 A similar situation applies to interstellar matter, to dark 
nebulae, and to the earth’s atmosphere (in which the species 
populations are crucial to studies of the ozone hole and of 
climate change, and for which other techniques such as 
probes are available). An analogous situation applies to 
combustion engines, arcs, incinerators, and luminous nebu-
lae; however, in these cases emission intensity constants are 
needed instead of absorption intensity constants. 
 The determinations of intensity constants, in the labora-
tory or by computation, are difficult tasks and cannot be 
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described here. The salient fact is that too few of them are 
known. The author heard of a case, some 50 years ago, 
where needed transition moments for a molecule of astro-
physical interest were estimated by averaging known mo-
ments for neighboring molecules! The meanings of “neigh-
boring” (similar) are scattered throughout this review, since 
any architecture of a periodic system must place similar 
molecules as neighbors. 

3. THE ODYSSEY BEGINS: A COMPILATION OF 
ATOMIC OSCILLATOR STRENGTHS 

 Our group had devoted some years to the measurement of 
f-values for neutral atoms excited in iron, manganese, and 
chromium arcs, and to the compilation of f-values from the 
literature. Russian publications on spectroscopy contributed 
greatly to this work, and on the flip side this work contrib-
uted to the very fruitful collaborations on periodic systems of 
molecules which are to be described in Sections 5.5 and 5.7. 
This compilation was given to the National Bureau of Stan-
dards (now NIST), which absorbed it into its superb publica-
tions. Then our group found that, for a given transition and 
sequence of atoms and isoelectronic ions (e.g., the 2s-2p
transition of Li+, Be2+, B3+, …) the f-values often have a 
hyperbolic dependence on the ionization stage [3]. This 
dependence was reformulated by the NIST group and is now 
known as the 1/Z relation. Thus, the beginning of the odys-
sey resulted in a healthy respect for how tedious it is to make 
critical tables of spectroscopic constants and also of a suspi-
cion that systematic trends are to be found among the con-
stants. 

4. THE LOGICAL NEXT STEP: A COMPILATION OF 
DIATOMIC MOLECULAR INTENSITY CONSTANTS 

 The SAU group then embarked upon the compilation [4], 
and upon graphical systematics [5, 6] of, diatomic molecular 
band intensity constants. The graphs consist of nine unre-
lated cases where there were sufficient numbers of one or 
another kind of intensity constant: group-1 and group-7 di-
mers; group-1 hydrides; group-2 oxides; group-3 halides; 
and for 12 to 15 electron, neutral and ionized, molecular 
isoelectronic series. The plots have large error bars or dis-
crepancies, but one could be used to estimate a reasonably 
defensible intensity constant. Another shows that the neces-
sarily linear behaviors of the transition moments for OH and 
HF+ (two species with 9 electrons) and for SH and HCl+ (17 
electrons) are parallel — suggesting the importance of 
isoelectronic and isovalent molecules. 

5. CONSTRUCTION OF THE KRONECKER-
PRODUCT PERIODIC SYSTEM FOR DIATOMIC 
MOLECULES WITH DATA ACCUMULATED TO 
1978

5.1. A “Eureka!” Moment, Late 1976 

 The graphs led to the constructing of “periodic tables” for 
dimers, hydrides, and for oxides and halides of main-group 
atoms [5]. The first two of these tables were based on mo-
lecular orbital configurations. The others were based on data 
for dissociation potentials (Do

o). Syrkin, in honor of the 
anniversary of Mendeleev’s death [7], had published tables 
very similar to the first two. 

 Years later, the Moscow State University molecular spec-
troscopy laboratory published a superb new critically-
analyzed compilation of transition-moments [8,9]. Graphs 
from this compilation of data for isoelectronic and isovalent 
series were sufficiently well-behaved that functions of the 
appropriate variables could be eye-ball fitted to the data, and 
two transition moments (for CaCl and SrCl) were predicted 
[10]. 
 For molecules with one or two rare-gas atoms, Do

o and 
vibration frequencies ( e) are so small, and internuclear 
separations (re) are so large, that these species are quite 
unique (even though some of their other property data are in 
normal ranges). A graph of Do

o of dimers and of oxides of 
the elements, Fig. (1), demonstrates [11] that zinc, cadmium, 
and (not shown) mercury molecules, at the ends of the transi-
tion-metal series, act like closed-shell rare-gas molecules. 
This graph led to defining the property surfaces or terrains 
on coordinate systems specifically suited to two-atom sys-
tems, as explained in the next section. 

Fig. (1). Dissociation energies of homonuclear and oxide molecules 
out to Z = 56. The domain is divided into seven regions, the fourth 
and sixth of which are where transition-metal molecules reside. 
Rare-gas dimers and oxides have near-zero values at abscissae 2, 
10, 18, 36, and 54 (not shown); Be, Mg, and Sr dimers have the 
very low values of van der Waals species at 4, 12, 20 (not shown), 
and 38; Zn and Cd dimers have the very low values signaling the 
ends of transition-metal series at Z = 30 and 48. Additional evi-
dence that Zn, Cd, and Hg molecules form a physical (as well as 
configurational) boundary for a periodic-system area is found in 
low-magnitude data for such species as ZnCd, ZnHg, and CdHg 

5.2. The Definition of Fixed-Period Areas of the Dia-
tomic-Molecule Periodic System 

 The first step in defining how property data are distrib-
uted in suitable coordinates was made graphically. It was the 
plot, mentioned just above, of molecular dimers and of ox-
ides on an axis which enumerates the one atomic number Z.
The peaks of this familiar graph have a surprising aspect — 
the peaks for the dimers and oxides are not at the same 
places. For instance, the highest values of Do

o for molecules 
with second-period atoms have Z values at 7 and 6 (N in N2
and C in CO), Fig. (1), and those for molecules with third-
period atoms have Z-values of 15 and 14 (P in P2 and Si in 
SiO). This repeated behavior led to the understanding that 
the molecules with the highest Do

o values are isoelectronic 
(in that portion of the isoelectronic sequence not near inert-
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gas molecules). The same relationship is seen for other prop-
erties. 
 The incomplete “periodic tables” described in Section 5.1 
then evolved into square and rectangular areas populated by 
fixed-period molecules as follows: the x and y axes of a plane 
were labeled Z1 and Z2. Perpendicular lines were drawn from 
points on each axis at the atomic magic numbers Zi of the rare-
gas atoms. The same was done for Zi of Zn, Cd, and Hg and for 
Zi of the elements terminating the lanthanoids and actinoids. 
These lines defined the square and rectangular areas [11] shown 
in Fig. (2). How many kinds of areas are there? It depends on 
whether or not the types of atoms (main-group, transition-metal, 
and rare-earth) are separated, and on whether areas containing 
homonuclear species (e.g. N2, P2) are kept together with areas 
having atoms from different periods (e.g., PN). 

Fig. (2). The space of diatomic molecules out to atomic numbers 
118. Hatched areas are populated by species containing transition-
metal and rare-earth atoms. The areas are designated arbitrarily as 
follows: A, G, and L, main-group, transition-metal, and rare-earth 
pairs containing homonuclear molecules; B, main-group hydrides; 
A1=B1 contain H2, HeH, and HeH2; D, transition-metal hydrides; I, 
rare-earth hydrides; C, H, and M, main-group, transition-metal, and 
rare-earth pairs not containing homonuclears; E and F, molecules 
with the main-group atom on one axis and the transition-metal atom 
on the other; J and K, those with the main-group atom on one axis 
and with the rare-earth atom on the other; N and O, molecules with 
the transition-metal atom on one axis and the rare-earth atom on the 
other. Thus there are 15 areas; however merging A with C, E with 
F, G with H, J with K, L with M, and N with O results in the nine 
final areas. Used by permission from Periodic Systems and their 
Relation to the Systematic Analysis of Molecular Data, The Edwen 
Mellen Press, Lewiston, NY, from Ref. [18], and by permission 
from Elsevier Publishers, from [Ref. 11]. 

 The process, then, consists of dividing the Z1,Z2 plane 
into areas which are enumerated according to the period 
numbers, R1 and R2, of the atoms, such as in Fig. (3); within 
the areas the molecules are enumerated according to the 
group numbers, C1 and C2, of the atoms. This exchange of 

two coordinates for four seems disingenuous but the evi-
dence to be presented supports its usefulness. 
 Among several enumerations of fixed-period areas, three 
were studied in detail and one proved to be optimal. The first 
had all atoms in a given period kept together; this meant that 
the areas have places for 32 x 32 molecules to accommodate 
diatomics with atoms from periods 6 and 7. Consequently, 
the other areas have gaps, most spectacularly the area with 
R1 = R2 = 1, having H2, HeH, HHe, and He2 on its corners, as 
can be seen in Fig. (8) of [11]. The second had 15 kinds of 
areas, as shown in Fig. (5) of [11]. The third, optimal, enu-
meration (shown in Fig. (9) of [11] and here in Fig. (4)) is 
derived from the second and has nine areas. Fig. (6) of Ref. 
[11] shows a few of the blocks in enough detail that molecu-
lar locations can be identified. Its main advantage is that 
molecules with main group atoms (s and p) are kept together; 
given that these species have been the most studied, there 
was a greater chance of understanding the trends in the data. 

Fig. (3). Several properties of main-group ground-state diatomic 
molecules, with atoms from various periods (R1,R2), were studied. 
In each case, if possible, the line starting from the highest (or low-
est) value(s) and going the least rapidly toward zero was drawn. 
The starting values were either at (C1,C2) = (5,5) or at (6,4) and 
(4,6), i.e., at the positions of N2 or CO. The asymmetry of the dia-
gram is due to the restriction R1 R2. The totality of lines between 
addresses in the plane is indicated by the width of the lines and by 
the accompanying number. Neglecting the lines with small weights, 
it is clear that the main part of the ridge (valley) of extreme data lies 
on the isoelectronic line C1 + C2 = 10. 

5.3. Distributions of Data on Fixed-Period (R1,R2) Areas 

 The investigation began with by printing molecular con-
figurations, terms, or values on the fixed-period molecular 
areas. Thus there came about an understanding of how the 
data are distributed — at least on the 8 x 8 “chessboard” 
areas for main-group molecules: 
a. It was found that neutral molecules near the middles 

of diagonal sequences seemed to have the similar sta-
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bilities. For instance, among molecules with (R1,R2) = 
(2,2), the very stable CO, N2, and OC are isoelec-
tronic, lying on the diagonal C1 + C2 = 10 (the total 
number of their valence-shell electrons) [12].  

b. Starting with the molecule having the highest Do
o, e,

and ionization potential (IP), there is a line of least 
descent on the chessboard; similarly, starting with the 
molecule having the lowest re, total entropy at 1kK 
(So

1000), logarithm of the partition function [Q(1000)], 
or logarithm of the equilibrium constant between iso-
lated atoms and diatomic molecules (logpK1000), there 
is a line of least ascent [12]. The lines for each of 
these properties and for each choice of the fixed peri-
ods define a very clear ridge or valley which (if one 
does not extend it too close to molecules with a rare-
gas atom) falls on the same diagonal as described 
above. Fig. (3) shows the result of this investigation.  

c. Assuming that covalently-bonded molecules with p
atoms which “obey” the rule of 8 are the most stable 
fails to place them on the lines described above be-
cause these molecules are on the major diagonal of 
their areas (e.g., N2, O2, and F2). However, dative 
bonding can cause (an isomer of) CO to join the list; 
then CO, N2, and OC do lie on the same diagonal 
ridge [13]. Similar considerations apply to areas with 
other (R1,R2). An algebraic study of molecules con-
taining period-4 transition-metal atoms with covalent 
and dative bonds has helped map their portions of the 
(Z1,Z2) plane [14].  

d. On the fixed-period areas with large numbers of data 
(those containing the lighter molecules), contour lines 
were sketched. The data of highest magnitude appear 
to be surrounded by sausage-shaped contours sur-
rounding the same 10 valence-shell electron ridges.  

e. A way of confirming the results was contributed by 
F.-A. Kong [15], who had plotted data for several 
properties of diatomics against a “molecular number” 
that is piecewise continuous with respect to Z1+Z2.

 Ionized molecules can be addressed on these same fixed-
period chessboards. It is obvious from orbital configurations 
that N2

2+ should be placed at the same location as C2, and it 
seems reasonable that N2

+ should be located half-way be-
tween these two. But should NO+ be placed at CO or at N2?
Since the question has nothing to do with dissociation chan-
nels, both of these options were rejected and it was assumed 
that if a molecule having atoms with numbers Z1 and Z2 has 
positive charge q, then its address should be (Z1 q/2,Z2 q/2) 
[16,17]. 
 By extension, hypothetical molecules containing quarked 
nuclei (i.e. molecules having nuclear charges differing from 
integers by e/3, where e is the electron charge) were later 
placed on the grids so that their properties could be estimated 
by interpolation [Ref. 18, pp. 330-350]. 
 The next question is, How are these fixed-period areas to 
be arranged from period to period? 

5.4. Stacking of Fixed-Period Molecule Areas to Complete 
the Three-Dimensional Periodic System of Diatomic Mole-
cules 

 The numerical data lying at fixed-group addresses in the 
various squares or rectangles described above tend to vary in 
a quite similar monotonic way with respect to the period 
numbers of the two atoms. Graphical and statistical analyses 
found that the variation was the most monotonic with respect 
to (R1·R2) [11]. A function for the internuclear separation re,
re = A +  log(R1·R2),            (1) 
where A is a constant dependent upon the group numbers, 
has been derived theoretically [19]. Its profile is in accord 
with the known uniqueness of period-2 atoms (equivalently, 
with second periodicity) in the element chart and it (in con-
junction with Badger’s rule) suggests a function with which 
to begin fitting for the vibration frequency e.
 As stated in Section 5.2, the optimum number of fixed-
period areas was found to be nine. Thus, the entire process 
resulted in nine blocks of areas, stacked according to Eq. (1), 
and the molecules are addressed on each area according to 
C1 and C2. This ensemble forms the three-dimensional peri-
odic system of diatomic molecules. But is there any theoreti-
cal justification for this architecture? Sections 5.6 to 5.8 
deals with this question. 

5.5. Help from an Unexpected Quarter, November 1978 
to June 1979 

 The author was invited by the American and Soviet 
Academies of Sciences to serve as an exchange scholar in 
the field of optical spectroscopy (measuring spectroscopic 
constants of Dy+ and Dy2+ and investigating the spectrum of 
CaXe at Leningrad State University, LSU [20]). This invita-
tion gave an unparalleled opportunity to explore the subject 
of molecular periodicity on the side: the periodic table of the 
elements had been a symbol of national pride and study in 
Russia for decades and several investigators had considered 
an extension into the space of diatomic or even larger mole-
cules. Morozov had in 1907 assembled the alkanes into a 
periodic table [2]; Syrkin had in 1971 published a periodic 
system of practically the same molecules as those contained 
in the classification described in Section 4 [7]; and the chem-
istry faculty at Leningrad State University had for years been 
assembling molecular data for their eventual classification 
into a “supermatrix” [21]. 
 Soon after our first meeting, Monyakin constructed a 
beautiful system of diatomic molecules which also consisted 
of three-dimensional blocks [Ref. 18, pp. 438-442; Ref. 22]. 
There are 16 of them, and the coordinates are different than 
those of the system built by our group. What was the rela-
tionship between these two systems? This question caused 
much concern for over two years, and its resolution is given 
in Section 5.9. 

5.6. Using the New Data to Improve Previous Results and 
to Produce Visual Representations 

 After the exchange trip, the magnificent 1979 compila-
tion of molecular properties of Huber and Herzberg [23]  
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appeared, and the SAU group had collected many additional 
data for properties for rare-gas molecules and alkaline-earth 
pairs from the literature. All of this led to the assembly of a 
new data base so that the enumerated steps in Section 5.3 
could be redone. 
 Also, our group sought attractive presentations of the 
system in three dimensions. For example, a poster showed 
the stacked areas containing main-group molecules twice, at 
slightly different angles, such that by looking at the display 
with eyes crossed creates a three-dimensional image [Ref. 
18, pp. 471-473; Ref. 24]. The molecules’ internuclear sepa-
rations were shown as balls of various radii. As another 
example, molecular symbols were printed on each area, the 
areas were glued to blocks of wood, and these were stacked 
to create a truly three-dimensional display. Fig. (4) is a two-
dimensional representation of this display. Finally, the areas 
can be mapped onto Möbius strips, which can be stacked 
according to Eq. (1). This representation eliminates redun-
dant molecules on R1 = R2 areas [25]. 

5.7. A Molecular Classification from Group Theory, Rus-
sia, January to July 1981 

 The major advance during a second exchange visit was to 
extend the existing group theoretical representations of the 
periodic table of the elements, which consists of multiplets 
of state vectors in Hilbert space H (1) [26-32], to molecules. 
The appropriate irreducible representations for diatomic and 
triatomic molecular states were derived, largely thanks to G. 
V. Zhuvikin (LSU) [33-36]. 
 This advance involved starting out with the several 
group-dynamic chains that had led to representations in 
slightly different forms of the element chart. Then it required 
the creation, using ladder operators, of the multiplets of state 
vectors, for each chain, in the spaces H (2) and H (3). 
 The mathematical procedure is analogous to the determi-
nation of configurations for two or three electrons using 
Clebsch-Gordan coefficients [37], and therefore we use  
nomenclature such as “chemical angular momentum” and  

Fig. (4). The nine blocks formed from stacking the 15 kinds of areas enumerated in Fig. (2). By the side of each block are the area notations. 
The little cube “11 A1B1” belongs either on one end of the top of “H & He with s & p” or on a corner of the top of “s & p with s & p”. It is 
not a tenth block, even though placed alone in this rendering — the situation is analogous to the locations of H on the element chart, which 
has caused so much frustration that hydrogen is sometimes put all by itself, and of He, which is sometimes found over Be instead of over Ne. 
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“chemical spin” (which is quite distasteful to more abstract 
mathematicians). This work continued after the exchange 
visit was over, as will now be described. 

5.8. The Group Dynamic Classification Provides Theo-
retical Support for the Periodic System 

 It was found, by graphing data for the irreducible repre-
sentations of several different dynamic-group chains, that 
agreement with the molecular data was by far the most satis-
factory with SO(3) SU(2)s SO(3) SU(2)s as seen in 
Fig. (5). All the multiplets for diatomic and triatomic mole-
cules were derived, i.e., the complete periodic systems (in 
this group representation) were built [38], and all the mo-
lecular symbols in the multiplets for diatomic species are 
presented on two wall charts [39]. Additional important 
results come from theorems relating various ways of writing 
equations for observables [35]. One of these theorems sup-
poses that molecular data are inscribed in a “first-order” 
matrix P(1); it states that 
<AB|P(1)AB|AB> = (1/2)<AA|P(1)AA|AA> + 
(1/2)<BB|P(1)BB|BB>            (2) 
where the heteronuclear-molecule matrix element is P(1)AB
and the homonuclear-molecule matrix elements are P(1)AA
and P(1)BB. There is an analogous theorem for triatomic 
molecules. They both state that some molecular data can be 
written as the average of corresponding data for neighboring 
homonuclear molecules; this relates to averaging as it has 
been discussed in Section 2 and will be discussed again in 
Section 10.2. Another theorem suggests that some diatomic 
molecular data can be written as the sum of the constituent 
atomic data, and a third, involving a “second-order” matrix 
P(2), suggests that some triatomic molecular data can be 
written as the sum of the constituent diatomic molecular 
data. Data additivity will be considered in the following 
section. 

Fig. (5). Dissociation energy for the 3D multiplet of (R1,R2) = (2,2) 
diatomic molecules plotted on the z-component quantum numbers 
of the chemical angular momentum (m) and of the chemical spin 
( ) related to the group SO(3) x SU(2)s. A, C, D, and E indicate the 
positions of FNe, BC, C2, and B2; B indicates the location of a 
linear superposition of BO and CN (all of these molecular formulae 
have normalization constants). The dashed lines with approximately 
constant ordinate connect isoelectronic species with totals of 18, 16, 
14, and 12 electrons from left to right. The canting of the surface 
makes least-squares fitting extremely difficult. 

 This periodic system derived from the group SO(3)
SU(2)s SO(3) SU(2)s and from Eq. (1) serves as an 
alternative to the Kronecker-product periodic system in 
somewhat the same way as the “short-form” chart of the 
elements serves as an alternative to the long form, where the 
transition-metals are separate from the main-group elements. 
The fact that it is a viable alternative is less obvious — 
firstly, because the irreducible representations produce mo-
lecular states consisting of linear combinations of molecules, 
and secondly because of the very large number of multiplets. 
The linear combinations are analogous to the multitudes of 
isotopes implicit in compartments of the periodic chart of the 
elements, and the molecules in the combinations usually 
have similar data. The large number of multiplets simply 
increases the size of the display [39]. 
 If, in the development of the group-dynamic system, 
reducible representations of the group SO(4) SO(4) are 
used instead of irreducible representations; are suitably parti-
tioned into combinations of s, p, d, and f groups; and are 
used with Eq. (1), then they reproduce the areas of the 9-
block system of diatomic molecules and give it a partial 
theoretical basis [17,35]. 

5.9. Completion of the Four-Dimensional Periodic System 
of Diatomic Molecules 

 A combination of several factors — passing comments 
by a student and by C.E. Wulfman (University of the Pacific, 
retired); the group dynamics treatment just described; a cou-
ple of papers showing molecular combinations in “multipli-
cation tables”; and the long process of seeking to deconvo-
lute Monyakin’s system into an element chart that could be 
self-multiplied to reconstitute his system (and realizing that 
it was very close to the form of the periodic chart popular in 
Russia) — resulted in the (now obvious) realization that 
Monyakin’s system and our group’s system could be recon-
ciled: they were both Kronecker products of periodic charts 
(different charts) of the elements with themselves [22]. To be 
more precise, they are both Kronecker products of zero ma-
trices in which the element charts have been embedded. 
 With this formulation, the quest for a periodic system of 
diatomic molecules is concluded. It is a four-dimensional 
architecture formed by a Kronecker product of any chart of 
the elements embedded in a square null matrix. The concept 
is shown in Figs. (6) to (8). 

Fig. (6). Imagine that there are only four elements in the Mendeleev 
chart, and that they are arranged in a 2 x 2 matrix. The Kronecker 
product produces a 4 x 4 matrix which contains four 2 x 2 subma-
trices; one of them has elements Li2, LiBe, LiNa, and LiMg. 
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 The symbols like C and O (for carbon and oxygen) are 
entries in the element-chart matrix, and so “multiplied” sym-
bols like CO will appear in the Kronecker-product matrix. 
We will encounter just below cases where data are additive. 
 All of the previously proposed two-dimensional periodic 
systems of diatomics [1,2] are special cases of the 
Kronecker-product architecture; it is possible to build a four-
dimensional hyperspherical periodic system with toroidal 
cross-sections if one begins with a polar-coordinate element 
chart [22]. It is also possible to take a previously proposed 
chart for elements in a two-dimensional world [40] and to 
construct a periodic system for diatomic molecules in that 
world. 
 Various phenomena are predicted with the Kronecker-
product periodic system, such as the additivity of some 
atomic/molecular properties. For instance, the additivity of 
covalent radii to form internuclear separations is incorpo-
rated by supposing that the data are positioned as exponents 
of some number, say the natural number e. The entries in the 
product system (internuclear separations) are then sums (of 
covalent radii) in the exponents. The same applies to NMR 
chemical shifts, to various cross-sections at high energy, and 
to the rate of change of ionization potential with respect to 
the extent of ionization (q), evaluated at q = 0, with the num-
ber of electrons fixed [Ref. 18, pp. 304-316 and 321-326; 
Ref. 41]. 

Fig. (7). The matrix shown in Fig. (6) is here represented as a 
tesseract. If a larger number of molecules are included in Fig. (6)
and (7), some beautiful symmetries are seen in the placements of 
molecular symbols [16,18]. Used by permission from Periodic 
Systems and their Relation to the Systematic Analysis of Molecular 
Data, The Edivine Mellen Press, Lewiston, NY, Ref. [18]. 

 For some time, our group had sought to find more ap-
pealing ways to present the 9-block system, beyond the ef-
forts described in Section 5.6. This search eventually re-
sulted in the computer plotting of isometric stick (or  

“drop-down”) graphs for molecular structure data on all of 
the main-group areas for diatomic molecules, which in turn 
resulted in isometric shaded drawings of the surfaces for Do

o

[2,12], re [2,12,42], e [2,21] and IP. Stick graphs were also 
plotted for fixed-group molecules [ch. 6 of 18]. These graphs 
showed that the (R1·R2) dependence established earlier (Sec-
tion 5.4) is an excellent first approximation. 
 The advent of computer-aided literature searches was 
largely responsible for the realization that not only other 
Russian (Morozov, Syrkin), but also American [43], British 
[44], Chinese (Kong), and German [45] scientists had pub-
lished periodic classifications of molecules. Most of these 
had proceeded in the same way as had our group in that “all” 
of the molecules with a fixed number of atoms, invariably 
starting with two, were included; we choose to call these 
“physical periodic systems.” The other systems [43,45] are 
classifications of specific kinds of molecules with various 
numbers of atoms, such as polycyclic aromatic hydrocarbons 
or fluorine functional groups; we choose to call these 
“chemical periodic systems” [1,2]. 

6. CONSTRUCTING OF THE KRONECKER-
PRODUCT PERIODIC SYSTEM FOR LINEAR/BENT 
TRIATOMIC MOLECULES, BEGINNING 1984 

6.1. Initial Expectations and Problems 

 It was expected that investigating periodicity among 
triatomic molecules would follow a sequence just like that 
for diatomic molecules, perhaps with initial obstacles such as 
notation in the databases — the naming of atoms in ABC 
molecules, and even in some AB2 species, for instance — 
and the lack of consistent error evaluations. And it was con-
fidently expected that if periodicity were demonstrated to 
exist, then the periodic system coordinates would be R1, C 1,
R2, C 2, R 3, and C 3.

6.2. Periodicity on the Homonuclear Axis 

 A first hint of periodicity emerged, but not as expected 
by analogy to the diatomic history. The analogue of item 
5.3e came first. Kong, in chapter 11 of [18], plotted data for 
several properties of triatomic molecules against a “molecu-
lar number” that is piecewise continuous with respect to Z1 +
Z2 + Z3. The properties are the average of the binding ener-
gies (AB with C) and (A with BC); the relative contraction 
of the internuclear separations; IP; and the bond angle. Kong 
justified the curves on the basis of molecular orbital theory 
(maximum stability should occur for species with 12 elec-
trons) and a rule that the abrupt occurrence of bent species 
should occur at 16 electrons. 
 Our group also graphed several properties on Kong’s “mo-
lecular number” axis, but with more resolution: the heat of 
atomization ( Ha) [46,47]; IP [46]; the internal entropy at 
1000K [So

1000(internal)] [46]; the total entropy (So
298.15); the 

partition function Q(1000); and logpK1000. One such plot is 
shown in Fig. (9). Of course there was general agreement with 
Kong, but we found that tagging the points for molecules with 
different central atoms resulted in discovering displacements 
of their peaks, as shown for Ha in Fig. (10). This result, 
reminiscent of the shift described at the beginning of Section 
5.2, was to prove very significant (Section 6.4). 
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6.3. Distributions of Data in Fixed-Period Volumes 

 Just as understanding the distribution of diatomic mo-
lecular data started on fixed-period squares and rectangles 
defined by molecules at the ends of s, p, d, and f series, so 
seeking to understand the distribution of triatomic data began 
by defining cubes and parallelpipeds bounded by the same 
magic numbers, Fig. (11). Just as the next step for diatomics 
was printing main-group molecular configurations and 
terms, or data, on 8 x 8 chessboards, so the next step (after 
item 5.3.e) for triatomics entailed plotting Ha [47]; IP;
So

298.15 [48]; So(internal)1000; Q(1000) and the bond angle in 8 
x 8x 8 cubes, as shown by one example in Fig. (12). There 
are not many data within any one of the cubes but there are 
enough to draw these conclusions, which largely follow the 
enumeration in Section 5.3: 
a. Walsh’s rule [49] is of course almost always obeyed 

by the bond angle. No other data have an isoelec-
tronic tendency except possibly weakly for IP.
(Isoelectronic molecules lie on planes, perpendicular 
to the homonuclear axis, or its analog in cases where 
the atoms come from different periods, described by 
C 1 + C 2 + C 3 = constant.) It is not obvious that the 
maximum Ha occurs for 12 electrons — in fact, by 
far the most stable molecule (even as defined by the 

partition function at 1kK) is CO2, with 16 electrons 
and represented in the figure by +. 
i. There do, however, seem to be molecules with 

similar data (for all the properties except bond 
angle and IP) falling on the plane C 1+ 2C 2+ C 3
= 18; note the five hexagons from FBeF at the 
bottom right and going to BeOBe toward the 
top in a row in Fig. (12). As will be described 
in Section 6.4, this result was to prove very 
significant. 

ii. There were more points with C2 = 4 (carbon, if 
R2 = 2) than for other C2 [46]. 

b. Starting with the molecule in a given (R1,R2,R3) and 
wishing to start with, for instance, the highest Ha,
one can draw a series of straight lines showing the 
path of least descent. The path is very erratic and 
even non-informative because so few data are avail-
able — percentage-wise, far fewer than for diatomic 
molecules. 

c. Identifying the covalently-bonded molecules with s
and p atoms which “obey” the rule of 8 does not help 
to determine the distribution of stable molecules be-
cause there are only six of them for any choice of pe-
riod numbers. For instance, if R1 = R2 = R3 = 2, they 

Fig. (8). Now imagine that all of the elements of the long-form chart are present (but not the lanthanoids and actinoids). The process de-
scribed in Figs. (6) and (7) produces a much more complex four-dimensional architecture. This representation places molecules at vertices 
(not in compartments) connected by lines. If one looks carefully it is possible to see the long-form element chart, often skewed, in any one of 
several orientations. For example, begin with H118 (element 118 hydride) at the bottom right, move “back” and left to Fr118, proceed 
“frontward” and to the left to 118118, thence “downward” to He118, “backwards” to Ne118, advance “back” and to the right to B118 and 
Ga118, then along the transition-metal-118 molecules to Ca118 (not identified), “down” and to the right to Be118 (not identified), thereafter 
a step to the right to Li118 (not identified), and back to H118. Many other projections of this four-dimensional system, and the placements of 
homonuclear molecules in the structure can be found in chapter 10 of [18] or are available from the author. Used by permission from Peri-
odic Systems and their Relation to the Systematic Analysis of Molecular Data, The Edivine Mellen Press, Lewiston, NY, Ref. [18]. 
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are OCO, FOF, NCF, ONF and the mirror images of 
the last two. Adding dative bonding results in includ-
ing far more molecules — s and p octet molecules lie 
on planes described by C 1+ C2+ C 3 = 16, 18, and 20 
[50] — in the portion of the cubes where most known 
molecular data lie. In any case, the method does not 
rank the species in order of stability. 

d. Repeated attempts to draw contours on the basis of 
alluring suggestions in the data (e.g., a spherical con-
tour around CO2) have been mildly encouraging [46]. 

 The work is incomplete, yet there is confidence that the 
outer-product six-dimensional periodic system of triatomic 
molecules will ultimately be acceptably vindicated when 
graphical displays of up-coming experimental, theoretical, or 
forecasted data show periodicity among all the equivalent 
(R1,R2,R3) cubes and parallelpipeds and when data predic-
tions can be made in quantity. In the meantime, an interest-
ing phenomenon emerged which poses a possible challenge 
for molecular quantum theory and which spawned what 
seemed for awhile to be a competitive periodic system. The 
phenomenon and the competitive system deserve the expla-
nations that follow. 

Fig. (9). The partition function at 1kK for diatomic molecules 
plotted on Kong’s number, which is piecewise continuous with total 
electron population in such a way that the five cohorts (really can-
yons) correspond to (R1,R2,R3) = (2,2,2), (2,3,2), (3,2,3), (3,3,3), 
and (3,4,3). Careful identification of each point to be sure that a 
molecule was of the form ABA and not AAB, made possible the 
determination — for a similar plot of aH at least — that the ex-
trema of (probably) dicarbides and dinitrides, and (certainly) for 
dioxides and difluorides tend to be displaced one unit from each 
other in the positive direction. 

6.4. The “Adjacent Diatomics-in-Molecules” Model 

 As hinted in Section 6.2, data points for molecules with 
central atoms F, O, maybe N, C, and possibly B are shifted 
one unit on the axis of Fig. (10). This shift suggests a new 
sort of isoelectronic series described by a constant value of  
C 1 + 2C 2 + C3 = (C 1 + C 2) + (C 2 + C 3). The series suggest a 
model of linear/bent triatomic molecules in which the atoms 
ABC are replaced by two diatomic molecules AB and BC. 
This model is somewhat akin to the “Diatomics in Mole-
cules” (DIM) model except that there is no term for the (non-
existent) bond AC. The model shows statistical significance 

for various properties of isomers of four-atom molecules 
[47]. 

Fig. (10). Heat of atomization of (from left to right) of dicarbide, 
dioxide, and difluoride molecules with central atoms from period 3. 
These molecules are extracted from a swarm of data resembling one 
of the swarms in Fig. (9), but for Ha. The sum of the group num-
bers is based on the old (groups 1 to 7) notation for main-group 
species. The peaks here have displacements of two and one. Be-
cause of the uncertainty of from five to ten percent which is typical 
of Ha data, many such graphs were prepared; they show that, on 
average, the peaks are displaced one unit as the central atom’s 
group number increases by one.  

Fig. (11). The space of triatomic main-group molecules with outer 
atoms from periods 2 to 7 and with the central atoms from periods 2 
to 5. Four 8 x 8 x 8 cubes are shown, each containing 512 mole-
cules. The two cubes with “right” and “left” atoms both from row 2 
contain 288 non-redundant species. The two other cubes have no 
redundant molecules within them but are mirror images of each 
other. Used by permission from Elsevier Publishers, from [Ref. 12]. 

6.5. An Alternate Periodic System for Triatomic Mole-
cules 

 Some of the many ways of looking at triatomic-species 
data suggested the construction of an alternate periodic sys-
tem of triatomic molecules — using the group number of the 
central atom, C 2; the total number of atomic valence-shell 
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electrons, ne = C 1+ C 2+ C 3; and some area- stacking func-
tion of R1, R2, and R3 — that would be three-dimensional 
instead of six-dimensional. Neural-network predicted data 
(later, in Section 7.2) for Ha and So

1000(internal) form very 
elegant surfaces on these axes, as Fig. (13) illustrates. 
 These areas can then be stacked according to a function 
of the period numbers. This function should include the 
period number of the third atom (R3) but should also reduce 
to the function for diatomic molecules (R1·R2) if the third 
atom (C of ABC) is removed [46]. The plots on various 
functions of the three period numbers showed f(R) = (R1·R2 + 
R2·R3) to be a good choice for the function. 
 This alternative periodic system was discarded because 
of the fact that more than one molecule can exist at a given 
address, especially for large values of f(R), thus making it 
impossible to use the system for good predictions of un-
known data at large values of f(R). 

Fig. (12). A detailed view of the cube closest to the origin of the 
space in Fig. (11), with the log of the partition function at 1000K 
being plotted. The x, y, and z axes represent the “left-hand”, center, 
and “right-hand” atoms in the molecules. The small numbers on the 
right and top edges of each plane indicate the total number of 
atomic valence-shell electrons of molecules in isoelectronic series, 
which lie in planes in and out of the figure (orthogonal to the cen-
terline which divides the plane into mirror images). Symbols coded 
at the lower right to represent the magnitudes of the data are placed 
at the locations pertaining to molecules. 

7. FITTING AND PREDICTION FOR DIATOMIC 
AND TRIATOMIC MOLECULAR DATA 

7.1. Least-Squares and Multiple-Regression Results 

 One-dimensional least-squares fitting and prediction of 
diatomic molecular data with respect to periods (Section 5.4) 
was done in a very preliminary way [11, 51]. Subsequently, 
triatomic molecules with s and p atoms were subjected to 
multiple-regression smoothing and forecasts, using powers 
of the three axes described in the previous section, just to see 
what general trends might emerge. The following properties 
were treated: Ha; IP; logpK1000; and logQ(1000) [48]. When 
the fitted data are compared with the tabulated data (when 
such exist) the agreements are surprisingly good for f(R) < 
19, e.g., an average difference of 21 kJ mol-1 for Ha. The 
agreements are the result of the fact that by far most of the 
known data are in the domains f(R) = (2·2 + 2·2) = 8, f(R) = 
(2·3 + 3·2) = (4·2 + 2·2) = 12, and f(R) = (3·3 + 3·3) = 18. 

Fig. (13). The internal entropy at 1kK plotted on the sum of the two 
atoms’ valence electron count ne and the group number of the cen-
tral atom C2. All of the molecules correspond to f(R) = (R1·R2 + 
R2·R3) = 8. The high-stability valley at 15-16 is where molecules 
change from linear to bent, and the hanging valley at C2 = 4 sug-
gests again that among the molecules in the data set, those with 
carbon in the center are somewhat more stable or more often stud-
ied than their immediate neighbors. Plots with larger values of f(R)
are similar but less sharply defined. 

7.2. Neural Network Results for Gas-Phase Diatomic and 
Triatomic Molecules 

 Our collaboration with W. B. Davis (Davis Research, Rio 
Linda, CA) began by fitting and forecasting of diatomic-
molecular data for several of the properties mentioned above 
by using inputs R1, C1, R2, C2, and terms related to the elec-
tronegativies of the atoms. It was assumed that equal-period 
non-homonuclear molecules should be entered twice [for 
instance CO at (C1,C2) = (4,6) and OC at (6,4)]. After many  
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trials in which the models treated the inputs unequally or 
even ignored some of them, the squares and cubes of the 
inputs were also inserted; this procedure resulted in im-
proved agreement with tabulated data. Further improvement 
was achieved by inserting duplicate data at the low and high 
ends of the data domain (where the data are under-
represented). Still further improvement was attained when 
the duplication of entries for molecules like CO and OC (the 
original assumption) was abandoned. 1,001 re data [52] and 
1,920 e data [53] not found in critical tables were predicted. 
Comparisons with some values gleaned from the literature 
showed that the predictions have sufficiently good accura-
cies to be adequate for preliminary studies of, say, stellar 
atmospheres. 
 Neural-network predictions for triatomic molecules, 
using the coordinates R1, C1, R2, C2, R3, and C3, where each 
molecule has its own unique location, have been partially 
successful for small f(R). 

8. EXPLORATIONS OF TRIATOMIC MOLECULES 
IN ANY PHASE 

8.1. Introduction 

 Now we begin to consider molecules in all phases, con-
centrating on regularities in just main-group triatomic mole-
cules (not including hydrogen or helium). Dr. Babaev, of 
Moscow State University, has contributed greatly to studies 
of molecular structure and periodicity. This Section is ab-
stracted from a summary written by him some time ago [54]; 
it may be considered a continuation of Section 6.3. This 
entire section revolves around Fig. (14). 

 Qualitative stabilities or instabilities will be given for 
some series of molecules that are present in all or many of 
the cubical spaces of Fig. (11) — series of molecules which 
have the same location for all values of the three atomic 
period numbers (R1,R2,R3). In time, it is hoped that quantita-
tive measures will be sufficiently numerous to replace the 
qualitative measures. 

8.2. Notation 

 Frequent reference to molecules by means of the group 
numbers of their atoms requires a shorter notation. Thus, 113 
will mean exactly that (C1,C2,C3) = (113). If the atoms can 
be from any period of the element chart, then M, E, X, and 
Rg designate metals in groups 1 to 3 (from the domain 1 to 
8), central-group atoms from groups 4 to 6, halides in group 
7, and rare-gas atoms in group 8 respectively. Just which 
group each comes from is indicated by the corresponding 
Roman numeral; thus, MII indicates a metal atom from group 
2. 

8.3. Metallic Bonding, 3 < ne < 8 

 The molecules discussed in this section lie in a diagonal 
band near the lower-left portion of Fig. (12). For the elec-
tron-deficient triatomic combinations with ne < 8 there is no 
known driving force that might stabilize isolated molecules, 
i.e., that might support the dominance of intramolecular 
bonds over intermolecular bonds. Although compounds with 
formulae AAA, AAB, or ABC are all known in the con-
densed phase, they are usually binary or ternary alloys with 
high electroconductivity. All outer electrons are delocalized 
— neither localized at separate atoms (as lone pairs) nor  

Fig. (14). Babaev’s overview of triatomic molecules, showing representative species distributed according to their bondings and numbers of
electrons. The individual species notations are explained in the text. The variously hatched regions in the grey zone, 8 ne  15 particularly, 
are of secondary interest. They somewhat follow the text and in some cases indicate a phase change or a different data source. 
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between atomic pairs (as bonds). Hence, there is no justifica-
tion for constructing Lewis diagrams.  
 Moreover, since atoms in these compounds form lattices, 
the main factor that defines the chemical constitution of the 
solids with ne < 8 is the relative sizes of the corresponding 
atoms. Just this factor is important for species with atoms 
from column numbers 111 (archetype NaNaK), 113 (Li2M), 
222 (CaMgMg) and 114 (NaNaSn), 223 (BaBaTl), and 133 
(RbGaGa).  
 There are exceptions connected with the appearance of a 
B atom, the most electro-negative atom in groups 1 to 3. In 
the case of BeBeB, there may be some sort of covalent bond-
ing.  

8.4. Ionic Bonding and Cases that Border Metallic Bond-
ing, 8 < ne < 15 

 The molecules discussed in this section lie in a diagonal 
band starting where the previous cohort lay to a diagonal 
somewhat higher than the middle diagonal plane in Fig. (12). 
One general type of ionic compounds contains MEM or 
MXM and EME or XMX. Stability is determined mainly by 
the difference between the free-atom valences of M and of E 
or X; thus, LiSLi is more stable than SrOSr and AlSAl. The 
second general type contains MEE or MXX (written EEM or 
XXM if the electronegativity of E or X is less than that of 
M). 
 At ne = 8 the first ionic series 116 (MIIEIVMII) appears. 
This is the first period-independent series to be encountered. 
The high chemical stability of these molecules obviously 
follows from the octet rule, as the E atom ends up with eight 
electrons. Two almost full isoelectronic series including 233 
(CaAlAl) and 242 (CaSiCa) are also known as solids for ne = 
8. “Almost full” means that members of the series are known 
to be stable for many period combinations but not for all. 
These two series lie on the border between the metallic lat-
tices and the structures with covalent or ionic bonds; their 
structures are determined by geometric factors. It would be 
quite interesting if any data on the structures of isolated 
molecules with atomic valences 233 or 224 would appear. 
 For 8 < ne < 15, the main factor of stability seems to be 
the ionic bonding between some cation MI to MIII and some 
diatomic anion. The following compounds with more or less 
pronounced ionic character are listed here: 

ne = 10: 145 – Alkali cyanides like LiCN 
   244 – Alkali-earth carbides like CaCC 
 ne = 12:  156 – LiNO (its dimer, Li2N2O2 is clearly  
              not a triatomic) 
   255 – BaNN 
   345 – TlCN 
 ne = 13: 166 – Alkali superoxides like KOO/g13  
 ne = 14: 167 – Alkali superhalogenides like KOCl 
   266 – Alkali-earth peroxides and disulfides  
              like BaOO and CaSS 
 The second factor that determines stability in these com-
pounds is the stability of the valence shell of the correspond-
ing diatomic anion, i.e., CN , CC2 , OO , OO2 , SS2 , and 

ClO ; the same may be true for NN2  and NO . Similar con-
siderations may apply to the bonding in the 244 species MI-

ISiSi and MIIGeGe. 
 There are compounds appearing in 8 < ne < 15 that are 
not stable — they may undergo disintegration into "normal" 
chalcogenides and a metal — but still the ionic character of 
the intra-molecular bonds is evident. Examples are the spe-
cies 363, such as GaOGa, and the alkaline-earth sub-oxides 
262, like BaOBa. 
 It is difficult to make any general statements about the 
structures of other members in 8 < ne < 15. These compounds 
show no pronounced chemical "individuality", and the exis-
tence and stability of the solids seems to be mainly due to 
geometrical factors: 

8.5. The Covalent, Borderline Ionic, and Van Der Waals 
Bonding, 16 < ne < 22 

 The molecules discussed in this section lie in the volume 
above and to the right of ne = 15 in Fig. (12). A giant “island 
of stability” appears at ne = 16. 
 556 – NNO  
 457 – XCN 
 466 – EIVEVIEVI, ranging from OCO to PbSS but missing  
     some members of the series 
 277 – XMIIX (the full family from FBeF to IRaI) 
ne = 16 is the first possibility to achieve the octet rule for 
each atom in a triatomic molecule. Indeed, bonding in FCN 
and OCO corresponds to 4 localized bonds, i.e., F:C:::N and 
O::C::O. The appearance of one more bond breaks down the 
octet rule, and hence the bonding in NNO (which also has 16 
valence electrons) is represented analogously, like O:N:::N 
or O::N::N, rather than like O::N:::N. 
 Triple-octet molecules are particularly interesting, and 
were studied algebraically as described in Sections 5.3 and 
6.3. It was there pointed out that the algebraic method is 
limited in that it does not rank the “stable molecules” in 
order of stability, and indeed the many stable molecules are 
not triple octets. 
 Since multiple bonds are typical only for second-row 
(main-group) elements, it is not surprising that the molecules 
isovalent to second-row species do not in general have the 
same structures. Examples are FSiN, FCP, etc., and SNN, 
OPN, ONP, etc. Moreover, some molecules like OSiO are 
not found in the gas phase and immediately polymerize to 
giant supermolecules in a condensed phase. 
 The cyan halides XCN (like many other polyatomics 
with a polar pi-bond) easily undergo trimerization into hex-
agonal triazines. The general stability of 16-electron shells 
also causes the stability of oxohalides of group 3, leading to 
stable solids like ClAlO and others known in the gas phase 
to be linear. More than that, many ions with less or more 
than 16 valence electrons tend to form this same shell struc-
ture and exist as stable, linear, 16-electron cations and ani-
ons. Two singly-ionized cations are ONO+ and COF+; some 
singly-ionized anions are BOO–, NCO–, CNO–, NCS–,
NCSe–, and NNN–; a doubly-ionized anion is NCN2– (within 
cyanamide it occurs as CaCNN); a triply-ionized anion is 
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NBN3–; and a four-times-ionized anion is CCC4– (as it occurs 
in MgCCCMg). 
 Stable series of covalent molecules and corresponding 
compounds appear within ne > 16, even granted that the new 
electrons are antibonding, even as far as ne = 22, where 
FXeF and FKrF are found. 
 Most limitations on the stability of molecules with ne >
15 are caused by the non-stability of multiple bonds for 
heavy main-group atoms. For instance, in EVIEVIEVI, OSO, 
OSeO, and OTeO are stable whereas OOO, SSO, SSeO, 
STeO, SeSeO, SeTeO, and TeTeO are unstable. Analo-
gously, in XEVEVI, XNO is stable whereas XPO and XAsO, 
and XNS, XNSe, and XNTe, are not. 

8.6. How are Sections 8 and 6.4 Related to the 
Kronecker-Product Periodic System? 

 The preceding section implies that each of the blocks in 
Fig. (11) has the same layers of isoelectronic molecules with 
various characteristics, modified in some cases [46] by the 
adjacent-DIM iselectronic effect. At the same time, it has 
been shown here that there are complete series of stable 
molecules such as MIIEIVMII and XMIIX; partially-complete 
series such as MIEVEV; and stable series such as those whose 
archetypes are listed in Section 8.3, which lie at exactly the 
same address in all or many possible R1, R2, and R3 cubes, 
which suggests the need for the six-dimensional Kronecker-
product periodic system of triatomics. Of couse, Fig. (11) is 
only one projection of this six-dimensional system. There is 
another projection in which a large space with coordinates 
C1, C2, and C3 is filled with small cubes having axes R1, R2,
and R3. In this projection, each of the series listed above 
would fill or partly fill just one cube. 

9. PROBING THE MOLECULAR SPACE BEYOND 
THREE-ATOMIC MOLECULES 

9.1. Background 

 Clearly, moving from molecules having two to those 
having three atoms presents increasing difficulty, due largely 
to the fact that the number of critically analyzed data be-
comes smaller compared to the number of molecules. Going 
to four atoms would be worse yet — the more so because of 
the proliferation of isomers — although some unpublished 
work by F.-A. Kong (Academia Sinica) is very promising. 
An algebraic prediction of closed-shell four-atom species 
[55] was successful but, as with similar predictions for tria-
tomic molecules [50], it can not tell us which of these spe-
cies is stable under normal conditions. 
 It was at this juncture that two previously peripheral 
streams of thought converged into a plan for exploring larger 
molecular spaces: first, the decades of work done by mathe-
matical chemists in characterizing classes of molecules using 
graph-theoretical (topological) indices, and second, the in-
sights gleaned from the visits to Russia (Sections 5.5 and 
5.7). 
 A group of Russian chemists at LSU had long hoped to 
describe all molecules in such a way that the properties of 
one set of them, in a given phase, could be related to the 
properties and phase of some other set of molecules by  

mathematical techniques [21]. They considered that the 
techniques were not yet available, and in order to prepare for 
the day when they were available, the chemists embarked on 
a massive experimental data-collection enterprise. In the 
process, they brought to light a large number of cases where 
there are almost linear relations between property data and 
the numbers of ligands or substituents in homologous mole-
cules (series known as congeneric molecules), particularly 
for Ha [56-58]. Fig. (15) shows a congeneric series. 

Fig. (15). Boiling points for benzene with from one to six hydrogen 
atoms replaced with a methyl group. The trend is quite linear. For 
two, three, and four substituents, there are three data; in two of 
these three, only two data were found. 

9.2. Pursuit of the Dream, 2002 and Onwards 

 We begin by plotting Ha of such a series on the x axis 
and the total number of atoms on the y axis, and finding the 
best-fit trend line passing through (x,y) = (1,0). A rank-2 
vector index is defined which has the value of Ha for the 
central atom (zero by definition) as the upper component, 
and the reciprocal of the slope of the line divided by 103 by 
convention, as the lower component. The lower component 
(which represents the whole homologous or substitution set) 
is often periodic with respect to the central atom or the 
ligand atom, or with respect to the substituent atom. The 
work has been generalized to other properties and to other 
phases. The work can also be extended to have a molecule as 
the central object, and to have identical molecular ligands (or 
substituents) [59,60]. These generalizations alter the value of 
the upper vector component. 
 The procedure has been applied to So

298.15, boiling points, 
heats of formation, Kovats’ retention index of various inor-
ganic and organic sets, and to the dipole moments of the long 
carbon chains found in interstellar and circumstellar space. 
Going from the properties of one set in a given phase to the 
properties and phase of some other set is done trivially with 
dyadics (or diagonal matrices) [60], thus fulfilling the hopes 
of the Leningrad State University scientists. The current 
research plan of our group is to determine vector indices for 
additional series (e.g., those in vertical columns of Hass’s 
periodic system [45] of functional groups) and to ascertain 
the extent to which periodicity is manifested. 
 The vector indices and their transforming dyadics show 
definite traces of periodicity. In the process of the investiga-
tion, these traces have been shown to exist in molecules with 
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as many as 12 atoms, and possibly in molecules with 32 
atoms [61]. 

9.3. Hyperperiodicity and a Possible Merging of Periodic 
Systems 

 Babaev has presented an ingenious proposal that orga-
nizes together the chart of the elements with present and 
future systems of diatomic and larger molecules [62]. His 
proposal includes “hyperperiodicity,” which classifies mole-
cules according to their numbers of non-hydrogen atoms and 
their shapes (in which lone-pair electrons are included). He 
illustrates the proposal with various well-known molecular 
species. It is the case that to work out this proposal com-
pletely requires several other implicit dimensions [2]. Hy-
perperiodicity is another of the surprises encountered in this 
odyssey, preceded by the extent of molecular periodicity 
itself and then the adjacent-DIM effect. 

10. NEIGHBORING (SIMILAR) MOLECULES 

 It is well to collect the scattered allusions to neighboring 
(or similar) molecules found in this review. For diatomic 
molecules, to first order, neighborliness is found in isoelec-
tronic species like N2, CO, and BF (and ions like CN  and 
CF+) and in isovalent species like Li2, NaLi, and Na2 (and 
ions like LiBe+ and NaB+, which may or may not ever be 
seen under standard laboratory conditions). For triatomic and 
tetra-atomic molecules, the same first-order effects domi-
nate. A second-order effect is embodied in the adjacent-DIM 
model. For linear homologous series, neighbors are of the 
form ABn and ABn+1; for substituted series, neighbors are of 
the form AkBlCm… and AkBlCm nDn… . (Also, molecular 
similarity is characterized by numerically-close topological 
indices or by small Euclidean distances on correlation plots.) 
And, of course, the thesis of this review is that even dissimi-
lar species are part of an overarching periodicity. 

11. OTHER ASPECTS OF MOLECULAR PERIODIC 
SYSTEMS 

11.1. Partial Order and Periodic Systems of Molecules 

 While it may seem that the Kronecker-product periodic 
system paradigm and the in-principle organization of ho-
mologous and substituted series are complete, several inter-
esting topics remain to be pursued. One of them is partial 
order. It is hoped that this essay will stimulate some ideas 
useful in the researches of specialists in partial order. 
 Reference has been made to how sparse the data are, the 
more so as the numbers of atoms in the molecules increase. 
It could be interesting to study the partial-order, or at least 
the related Hasse diagrams, of data [63] for some of the sets 
of molecules described. Since good data are continually 
being determined by computation or experiment, the study 
seems not to have much long-term use. 
 Partial order does find, however, application on a larger 
scale. Absolute symmetry among data for properties of at-
oms in the periods of the element chart is broken — the data 
differ. An appropriate Hasse diagram can be visualized if 
one imagines the periods of the element chart (a poset) to be 
slightly tilted in accordance with how data for a property 
varies from group to group in a period [64]. The same might 
be developed for molecules in their periodic systems (as 
multiposets) [65]. Closely related to partial order in periodic 

systems is the chemotopological approach, combined with  
partially ordered sets, being pursued by G. Restrepo (Univer-
sity of Pamplona, Colombia) [66-68]. The averaging scheme 
based on the discrete vector-calculus Laplacian constructed 
from data, to be described in the next section, is related to 
interpolation in posets [69,70]. 

11.2. The Vector Calculus of the Periodic Systems 

 As stated in item 5.3.d we tried to use contours to charac-
terize data on fixed-row planes of the periodic system of 
diatomic molecules. An alternative, visually effective, 
method is to create a discrete vector field [71]. The diver-
gences of these vectors are also interesting in that they show 
periodicity and second periodicity. The curl of a lattice of 
data points is of course zero. 
 It is possible to average iteratively all of the data values 
inside a two-dimensional boundary if data are known at least 
on the boundary and if the expected maximum and minimum 
values are known. This process, which can be done in Excel©

for instance, is theoretically equivalent to solving the nu-
merical Laplace equation [Ref. 41, pp. 80, 83; Ref. 72]. A 
test of this theory was accomplished by showing that fixed-
period, and fixed-group, Do

o and re data of diatomic mole-
cules have opposite curvatures with respect to C1 and C2 and 
with respect to R1 and R2. Predictions agreeing reasonably 
well with the known data (when available) can be made, 
using the numerical Laplace equation, for main-group mole-
cules on the (R1,R2) = (2,2) area in a triangular region 
bounded by (C1 + C2) = 10 — the ridge containing OC, N2
and CO — and by C1 or C2 equal to eight (18 in the IUPAC 
scheme), where rare-gas molecules having Do

o = 0 lie. We 
have generalized the method to include all four axes; by 
using 126 tabulated data and neural-network predicted data, 
and were able to forecast the values of six molecules (three 
not in critical tables) with a simple standard deviation of 
14% [12,73]. 

12. OTHER APPLICATIONS OF THE PERIODIC-
SYSTEM PARADIGM 

 Just as two atoms can form a molecule, so two nuclei 
have also been observed to form a “nuclear molecule.” If 
sufficient numbers of these are detected and evaluated, a 
periodic system for them can be tested. 
 The nearly 2,000 known, and, in fact, all possible nu-
clides have already been arranged into periodic systems 
using the same approach as described in this paper [Ref. 18, 
pp. 561-565], and using information theory [74]. 
 The three light quarks can be represented in a triangular 
diagram. The “Kronecker product” of this triangle, taken 
twice, produces a triangle with 27 baryons, the irreducible 
representations of which comprise the periodic system of 
many baryons. Addition of the charm quark generalizes the 
original system to be tetrahedral [SU(4)] and causes the 
Kronecker products to form a corresponding tetrahedron 
[75]. The same has been recently claimed for the bottom (or 
beauty) quark [76]. It can be anticipated that the same could 
in principle apply to the top (or truth) quark — granted that 
these heavy quarks do not behave in many ways as do the 
light quarks — and in each case there are options as to which 
three other quarks shall be included in the original tetrahe-
dron. 
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13. DISCUSSION 

 This investigation has been largely curiosity-driven, 
however it can be hoped that the predictions for small-
molecule gas-phase data might be of aid to spectroscopists, 
that the forecasts for other species might help in bench 
chemistry, and that the estimates for larger molecules (Sec-
tion 9) might be of assistance for the toxicological or envi-
ronmental sciences. The investigation has proven tremen-
dously attractive to undergraduate students. 
 A prominent astrophysicist once described his role in a 
large collaboration as being in an orchestra. This paper 
shows how a much more modest orchestra of a dozen part-
time senior investigators, plus their students, have started off 
with the one-part harmony of the chart of the elements and 
are now playing multi-part harmonies with molecules. 

ACKNOWLEDGEMENTS 

 E.V. Babaev has our gratitude for all the information and 
insights provided in Section 8. D.J. Klein and another, 
anonymous, reviewer went so far beyond the usual standards 
for refereeing an article that the author must express his 
sincere thanks. To A.B. Berezin (Ioffe Technical Institute, 
retired) and N.P. Penkin (LSU, deceased) the author will be 
forever indebted for their facilitating their side of the Acad-
emy of Sciences exchange visits. 

REFERENCES 
[1] Hefferlin, R.; Burdick, G. W, Russ. J. Gen. Chem., 1994, 64, 1659. 
[2] Hefferlin, R. In Philosophy of chemistry; Baird, D.; Scerri, E.; 

McIntyre, L., Eds.; Springer: Dordrecht, 2006; pp. 221-243. Fig. 
(7) of the chapter is in error and the correct figure will be sent upon 
request. 

[3] Hefferlin, R.; Rascon, L. J. Opt. Soc. Am., 1967, 57, 964. 
[4] Hefferlin, R.; Mashburn, J.; Flechas, J.; Main, R.P. J. Tenn. Acad. 

Sci., 1976, 51, 100. 
[5] Hefferlin, R. J. Quant. Spectrosc. Radiat. Transfer, 1976, 16, 1101. 
[6] Hefferlin, R. J. Quant. Spectrosc. Radiat. Transfer, 1978, 19, 335. 
[7] Syrkin, Y.K. In 100 let periodicheskovo zakona khimicheskix 

elementov. 1869-1969 (X yubileniyi Mendeleevskii s’ezd). Doklady 
na plenarnykh zasedaniyakh X yubileinovo Mendeleevskovo s’ezda,
Semenov, N.N., Ed.; Nauka: Moscow, 1969.

[8] http://www.elch.chem.msu.ru/raden/index.htm 
[9] Kuznetsova, L.A.; Pazyuk, E.A.; Stolyarov, A.V. The Data Bank 

RADEN; Proceedings Colloq. 146 Int Astronomical Union, May 
19-24. Niels Bohr Institute and Nordita: Copenhagen, 1993, pp. 
231-237. 

[10] Hefferlin, R.; Kuznetsova, L.A. J. Quant. Spectrosc. Radiat. Trans-
fer., 1999, 62, 765. 

[11] Hefferlin, R.; Campbell, R.; Gimbel, D.; Kuhlman, H.; Cayton, T. 
J. Quant. Spectrosc. Radiat. Transfer., 1979, 21, 315. 

[12] Hefferlin, R. J. Mol. Struct., 2000, 506, 71. 
[13] James, B.; Caviness, K.; Geach, J.; Walters, C.; Hefferlin, R. J. 

Chem. Inf. Comp. Sci., 2002, 42, 1. 
[14] Hefferlin, R.; Luk, K. Croat. Chem. Acta, 2007, 80, 227. 
[15] Kong, F. J. Mol. Struct., 1982, 90, 17. 
[16] Hefferlin, R.; Kuhlman, H. J. Quant. Spectrosc. Radiat. Transfer.,

1980, 24, 379. 
[17] Hefferlin, R.; Zhuvikin, G.; Caviness, K.; Duerksen, P.J. J. Quant. 

Spectrosc. Radiat. Transfer., 1984, 32, 257. 
[18] Hefferlin, R. Periodic systems of molecules and their relation to the 

systematic analysis of molecular data, Edwin Mellen Press: 
Lewiston, 1989.

[19] Nalewajski, R.F; Thakkar, A. J. J. Phys. Chem., 1983, 87, 5361. 
[20] Gorshchov, V.N. Opt. i Spektr. (Russian), 1980, 48, 657. 
[21] Latysheva, V.A.; Hefferlin, R. J. Chem. Inf. Comput. Sci., 2004,

44, 1202. 
[22] Hefferlin, R. J. Chem. Inf. Comp. Sci., 1994, 34, 314. 
[23] Huber, K.P.; Herzberg, G. Constants of diatomic molecules, Van 

Nostrand Reinhold Company: New York, 1979.

[24] Cornell, E. C.; Hefferlin, R.A. Graphic portrayal of periodicity of 
properties of diatomic molecules, First Annual National Confer-
ence on Undergraduate Research, Asheville, North Carolina, April 
24, 1987.

[25] Hefferlin, R. Croat. Chem. Acta, 2008, submitted. 
[26] Rumer, Y.B.; Fet, A.I. Teor. Mat. Fiz. (Russ.), 1971, 9, 203. 
[27] Fet, A.I. The system of elements from the group-theoretic view-

point, Institute of Inorganic Chemistry, Siberian Branch, Academy 
of Sciences of the U.S.S.R., Preprint No. 1: Novosibirsk, 1979.

[28] Fet, A. I. Theor. Math. Phys., 1975, 22, 227. 
[29] Ostrovsky, V.N. J. Phys. B., 1981, 14, 4425. 
[30] Barut, A. O., In Structure of matter (Proceedings of the Rutherford 

Centennary Symposium, 1971; Wybourne, B., Ed.; University of 
Canterbury Press: Canterbury, 1972; pp. 126-136. 

[31] Kitagawara, Y.; Barut, A.O. J. Phys. B., 1983, 16, 3305. 
[32] Berrondo, M.;Novaro, O. J. Phys. B., 1973, 6, 761. 
[33] Zhuvikin, G.V.; Hefferlin, R. The periodic system of diatomic 

molecules: group-theoretical approach, Vestnik Leningradskovo 
Universiteta, No. 16, 1983, pp. 10-16. 

[34] Zhuvikin, G.V.; Hefferlin, R. Anales de física, Monographias 1, 
Real Sociedad Española de Física, Proceedings of the XIX 
International Colloquium: Salamanca, 1992, Vol. 2, pp. 358-361. 

[35] Zhuvikin, G.V.; Hefferlin, R. Joint report #1 of the physics de-
partments of Southern College [SAU], Collegedale, TN, USA and 
St. Petersburg University, St. Petersburg, Russia, Southern Advent-
ist University: Collegedale, Tennessee, 1994.

[36] Carlson, C.M.; Hefferlin, R.; Zhuvikin, G.V. Joint report #2 of the 
physics departments of Southern College [SAU], Collegedale, TN, 
USA and St. Petersburg University, St. Petersburg, Russia, South-
ern Adventist University: Collegedale, Tennessee, 1995.

[37] Griffiths, D.J. Introduction to quantum mechanics, Prentice Hall: 
Upper Saddle River, 2005.

[38] Carlson, C.M.; Cavanaugh, R.J.; Hefferlin, R.; Zhuvikin, G.V. J. 
Chem. Inf. Comp. Sci., 1996, 36, 396. 

[39] Zhuvikin, G.V.; Carlson, C.M.; Cavanaugh, R.J.; Hefferlin, R.A. 
Periodic system of diatomic molecules in SO(3) SU(2)s bosonic 
symmetry: singlets and triplets: Physics Department, Southern Ad-
ventist University, Collegedale, Tennessee, 1994 (available from 
the author). 

[40] Asturias, F.J.; Aragon, S.R. Am. J. Phys., 1985, 53, 893. 
[41] Hefferlin, R.; Innis, W. J. Quant. Spectrosc. Radiat. Transfer.,

1983, 24, 97. 
[42] Hefferlin, R.; Kutzner, M. J. Chem. Phys., 1981, 75, 1035. 
[43] Dias, J.R. J. Chem. Inf. Comput. Sci., 1996, 36, 361. 
[44] Clark, C.H.D. Trans. Faraday Soc., 1935, 31, 1017. 
[45] Haas, A. Adv. Inorg. Chem. Radiochem., 1984, 28, 167. 
[46] Carlson, C.; Gilkeson, J.; Linderman, K.; LeBlanc, S.; Hefferlin, R. 

Croat. Chem. Acta, 1997, 70, 479. 
[47] Hefferlin, R.; Matus, M.T. J. Chem. Inf. Comp. Sci., 2001, 41, 484. 
[48] Cavanaugh, R.; Marsa, R.; Robertson, R.; Hefferlin, R. J. Mol. 

Struct., 1996, 382, 137. 
[49] Takahata, Y.; Schuelle, G.W.; Parr, R.G. J. Am. Chem. Soc., 1971,

93, 784. 
[50] Geach, J.; Walters, C.; James, B.; Caviness, K.E.; Hefferlin, R.A. 

Croat. Chem. Acta., 2002, 75, 383. 
[51] Hefferlin, R.; Kuhlman, H.; Campbell, R.; Gimbel, D. J. Quant. 

Spectrosc. Radiat. Transfer., 1979, 21, 337. 
[52] Hefferlin, R.; Davis, W.B.; Ileto, J. J. Chem. Inf. Comp. Sci., 2003,

43, 622. 
[53] Davis, W.B.; Hefferlin, R. J. Chem. Inf. Mol. Model., 2006, 46, 

820. 
[54] Babaev, E.V. Private Communication, 1991.
[55] Walters, C.J.; Caviness, K.E.; Hefferlin, R. Croat. Chem. Acta.,

2004, 77, 65. 
[56] Shchukarev, S.A. Neorganicheskaya khimiya, Vol. 1: Vysshaya 

shkola, Moscow, 1970.
[57] Shchukarev, S.A. Neorganicheskaya khimiya, Vol. 2: Vysshaya 

shkola, Moscow, 1974.
[58] Karapet’yantz, M. Kh. Khimicheskoe srodstvo: Znanie, Moscow, 

1972.
[59] Hefferlin, R.; Luk, K. Croat. Chem. Acta., 2006, 79, 559. 
[60] Hefferlin, R. Croat. Chem. Acta, 2008, submitted. 
[61] Luk, K.; Hefferlin, R.; Johnson, G. How Deep in Molecular Space 

can Periodicity be Found?, Proceedings of the 9th WSEAS Inter-
national CSCC Multiconference: Web and CD edition, 2005.

http://www.ingentaconnect.com/content/external-references?article=0095-2338(2003)43L.622[aid=8532850]
http://www.ingentaconnect.com/content/external-references?article=0095-2338(2003)43L.622[aid=8532850]
http://www.ingentaconnect.com/content/external-references?article=0095-2338(2003)43L.622[aid=8532850]
http://www.ingentaconnect.com/content/external-references?article=0022-4073(1979)21L.337[aid=8532851]
http://www.ingentaconnect.com/content/external-references?article=0022-4073(1979)21L.337[aid=8532851]
http://www.ingentaconnect.com/content/external-references?article=0022-4073(1979)21L.337[aid=8532851]
http://www.ingentaconnect.com/content/external-references?article=0022-4073(1979)21L.337[aid=8532851]
http://www.ingentaconnect.com/content/external-references?article=0022-4073(1979)21L.337[aid=8532851]
http://www.ingentaconnect.com/content/external-references?article=0002-7863(1971)93L.784[aid=8532853]
http://www.ingentaconnect.com/content/external-references?article=0002-7863(1971)93L.784[aid=8532853]
http://www.ingentaconnect.com/content/external-references?article=0002-7863(1971)93L.784[aid=8532853]
http://www.ingentaconnect.com/content/external-references?article=0022-2860(1996)382L.137[aid=8532854]
http://www.ingentaconnect.com/content/external-references?article=0022-2860(1996)382L.137[aid=8532854]
http://www.ingentaconnect.com/content/external-references?article=0022-2860(1996)382L.137[aid=8532854]
http://www.ingentaconnect.com/content/external-references?article=0022-2860(1996)382L.137[aid=8532854]
http://www.ingentaconnect.com/content/external-references?article=0022-2860(1996)382L.137[aid=8532854]
http://www.ingentaconnect.com/content/external-references?article=0095-2338(2001)41L.484[aid=8532855]
http://www.ingentaconnect.com/content/external-references?article=0095-2338(2001)41L.484[aid=8532855]
http://www.ingentaconnect.com/content/external-references?article=0095-2338(2001)41L.484[aid=8532855]
http://www.ingentaconnect.com/content/external-references?article=0095-2338(2001)41L.484[aid=8532855]
http://www.ingentaconnect.com/content/external-references?article=0014-7672(1935)31L.1017[aid=8532858]
http://www.ingentaconnect.com/content/external-references?article=0014-7672(1935)31L.1017[aid=8532858]
http://www.ingentaconnect.com/content/external-references?article=0014-7672(1935)31L.1017[aid=8532858]
http://www.ingentaconnect.com/content/external-references?article=0014-7672(1935)31L.1017[aid=8532858]
http://www.ingentaconnect.com/content/external-references?article=0021-9606(1981)75L.1035[aid=8532859]
http://www.ingentaconnect.com/content/external-references?article=0021-9606(1981)75L.1035[aid=8532859]
http://www.ingentaconnect.com/content/external-references?article=0021-9606(1981)75L.1035[aid=8532859]
http://www.ingentaconnect.com/content/external-references?article=0021-9606(1981)75L.1035[aid=8532859]
http://www.ingentaconnect.com/content/external-references?article=0022-4073(1983)24L.97[aid=8532860]
http://www.ingentaconnect.com/content/external-references?article=0022-4073(1983)24L.97[aid=8532860]
http://www.ingentaconnect.com/content/external-references?article=0022-4073(1983)24L.97[aid=8532860]
http://www.ingentaconnect.com/content/external-references?article=0002-9505(1985)53L.893[aid=8532861]
http://www.ingentaconnect.com/content/external-references?article=0095-2338(1996)36L.396[aid=8532862]
http://www.ingentaconnect.com/content/external-references?article=0095-2338(1996)36L.396[aid=8532862]
http://www.ingentaconnect.com/content/external-references?article=0040-5779(1975)22L.227[aid=8532863]
http://www.ingentaconnect.com/content/external-references?article=0095-2338(1994)34L.314[aid=8532864]
http://www.ingentaconnect.com/content/external-references?article=0095-2338(1994)34L.314[aid=8532864]
http://www.ingentaconnect.com/content/external-references?article=0095-2338(1994)34L.314[aid=8532864]
http://www.ingentaconnect.com/content/external-references?article=0095-2338(2004)44L.1202[aid=8532865]
http://www.ingentaconnect.com/content/external-references?article=0095-2338(2004)44L.1202[aid=8532865]
http://www.ingentaconnect.com/content/external-references?article=0095-2338(2004)44L.1202[aid=8532865]
http://www.ingentaconnect.com/content/external-references?article=0095-2338(2004)44L.1202[aid=8532865]
http://www.ingentaconnect.com/content/external-references?article=0022-4073(1984)32L.257[aid=8532867]
http://www.ingentaconnect.com/content/external-references?article=0022-4073(1984)32L.257[aid=8532867]
http://www.ingentaconnect.com/content/external-references?article=0022-4073(1984)32L.257[aid=8532867]
http://www.ingentaconnect.com/content/external-references?article=0022-4073(1984)32L.257[aid=8532867]
http://www.ingentaconnect.com/content/external-references?article=0022-4073(1980)24L.379[aid=8532868]
http://www.ingentaconnect.com/content/external-references?article=0022-4073(1980)24L.379[aid=8532868]
http://www.ingentaconnect.com/content/external-references?article=0022-4073(1980)24L.379[aid=8532868]
http://www.ingentaconnect.com/content/external-references?article=0022-2860(1982)90L.17[aid=8532869]
http://www.ingentaconnect.com/content/external-references?article=0022-2860(1982)90L.17[aid=8532869]
http://www.ingentaconnect.com/content/external-references?article=0022-2860(1982)90L.17[aid=8532869]
http://www.ingentaconnect.com/content/external-references?article=0095-2338(2002)42L.1[aid=8532871]
http://www.ingentaconnect.com/content/external-references?article=0095-2338(2002)42L.1[aid=8532871]
http://www.ingentaconnect.com/content/external-references?article=0095-2338(2002)42L.1[aid=8532871]
http://www.ingentaconnect.com/content/external-references?article=0095-2338(2002)42L.1[aid=8532871]
http://www.ingentaconnect.com/content/external-references?article=0022-4073(1979)21L.315[aid=8532873]
http://www.ingentaconnect.com/content/external-references?article=0022-4073(1999)62L.765[aid=8532874]
http://www.ingentaconnect.com/content/external-references?article=0022-4073(1999)62L.765[aid=8532874]
http://www.ingentaconnect.com/content/external-references?article=0022-4073(1978)19L.335[aid=8532875]
http://www.ingentaconnect.com/content/external-references?article=0022-4073(1978)19L.335[aid=8532875]
http://www.ingentaconnect.com/content/external-references?article=0022-4073(1978)19L.335[aid=8532875]
http://www.ingentaconnect.com/content/external-references?article=0022-4073(1976)16L.1101[aid=8532876]
http://www.ingentaconnect.com/content/external-references?article=0030-3941(1967)57L.964[aid=8532878]
http://www.ingentaconnect.com/content/external-references?article=0030-3941(1967)57L.964[aid=8532878]
http://www.ingentaconnect.com/content/external-references?article=0030-3941(1967)57L.964[aid=8532878]
http://www.elch.chem.msu.ru/raden/index.htm


706   Combinatorial Chemistry & High Throughput Screening, 2008, Vol. 11, No. 9 Ray Hefferlin 

[62] Babaev, E.V.; Hefferlin, R. In Concepts in chemistry, a contempo-
rary challenge, Rouvray, D.H., Ed.; John Wiley: New York, 1997;
pp. 41-100. 

[63] Hefferlin, R. In Partial order in environmental sciences and chem-
istry; Brüggermann, R.; Carlsen, L., Eds.; Springer: Berlin, 2006;
pp. 27-33. 

[64] Klein, D.J. J. Math. Chem., 1995, 18, 321. 
[65] Klein, D.J.; Babi , D. J. Chem. Inf. Comput. Sci., 1997, 37, 656. 
[66] Restrepo, G.; Mesa, H.; Llanos, E.J. J. Chem. Inf. Model., 2007, 47,

761. 
[67] Daza, M.C.; Restrepo, G.; Uribe, E.A.; Villaveces, J.L. Chem. 

Phys. Lett., 2006, 428, 55. 
[68] Restrepo, G.; Weckert, M.; Brüggemann, R.; Gerstmann, S.; Frank, 

H. Refrigerants ranked by partial order theory, in Hryniewicz, O.; 
Studzinski, J.; Szediw, A., Eds., EnviroInfo 2007, 21st Interna-

tional conference on informatics for environmental protection:
Shaker: Aachen, Germany, 2007; pp. 209-217. 

[69] Ivanciuc, T.; Klein, D.J. J. Chem. Inf. Comput. Sci., 2004, 44, 610. 
[70] Dosli , T.; Klein, D.J. J. Comp. Appl. Math., 2005, 177, 175. 
[71] Hefferlin, R. J. Math. Chem., 2008, 43, 386-394. 
[72] Sears, F.W.; Zermansky, M.W.; Young, H.D. University physics, 

Addison-Wesley: Reading, 1986.
[73] Hefferlin, R.; Knoll, J., J. Math. Chem., 2000, 28, 169. 
[74] Bonchev, D. In The mathematics of the periodic table; Rouvray, 

D.H.; King, R.B., Eds.; Nova Science Publishers: New York, 2006;
pp. 205-225. 

[75] Halzen, F.; Martin, A.D. Quarks & leptons: an introductory course 
in modern particle physics, John Wiley: New York, 1984, chapter 
2. 

[76] http://www.aip.org/png/2006/270.htm

Received: October 10, 2007 Revised: January 30, 2008 Accepted: March 14, 2008 

http://www.ingentaconnect.com/content/external-references?article=0259-9791(2000)28L.169[aid=8532880]
http://www.ingentaconnect.com/content/external-references?article=0259-9791(2008)43L.386[aid=8532881]
http://www.ingentaconnect.com/content/external-references?article=0259-9791(2008)43L.386[aid=8532881]
http://www.ingentaconnect.com/content/external-references?article=0259-9791(2008)43L.386[aid=8532881]
http://www.ingentaconnect.com/content/external-references?article=0259-9791(2008)43L.386[aid=8532881]
http://www.ingentaconnect.com/content/external-references?article=0095-2338(2004)44L.610[aid=8532317]
http://www.ingentaconnect.com/content/external-references?article=0095-2338(2004)44L.610[aid=8532317]
http://www.ingentaconnect.com/content/external-references?article=0095-2338(2004)44L.610[aid=8532317]
http://www.ingentaconnect.com/content/external-references?article=0095-2338(2004)44L.610[aid=8532317]
http://www.ingentaconnect.com/content/external-references?article=0009-2614(2006)428L.55[aid=8532882]
http://www.ingentaconnect.com/content/external-references?article=0009-2614(2006)428L.55[aid=8532882]
http://www.ingentaconnect.com/content/external-references?article=1549-9596(2007)47L.761[aid=8532883]
http://www.ingentaconnect.com/content/external-references?article=1549-9596(2007)47L.761[aid=8532883]
http://www.ingentaconnect.com/content/external-references?article=1549-9596(2007)47L.761[aid=8532883]
http://www.ingentaconnect.com/content/external-references?article=1549-9596(2007)47L.761[aid=8532883]
http://www.ingentaconnect.com/content/external-references?article=1549-9596(2007)47L.761[aid=8532883]
http://www.ingentaconnect.com/content/external-references?article=0095-2338(1997)37L.656[aid=8532186]
http://www.ingentaconnect.com/content/external-references?article=0259-9791(1995)18L.321[aid=8532187]
http://www.ingentaconnect.com/content/external-references?article=0259-9791(1995)18L.321[aid=8532187]
http://www.ingentaconnect.com/content/external-references?article=0259-9791(1995)18L.321[aid=8532187]
http://www.ingentaconnect.com/content/external-references?article=0259-9791(1995)18L.321[aid=8532187]
http://www.aip.org/png/2006/270.htm
http://www.aip.org/png/2006/270.htm
http://www.aip.org/png/2006/270.htm

	Southern Adventist University
	KnowledgeExchange@Southern
	3-14-2008

	Kronecker-Product Periodic Systems of Small Gas-Phase Molecules and the Search for Order in Atomic Ensembles of Any Phase
	Ray Hefferlin
	Recommended Citation


	tmp.1380052315.pdf.0U6kD

