
Southern Adventist University Southern Adventist University

Knowledge Exchange Knowledge Exchange

MS in Computer Science Project Reports School of Computing

Spring 4-19-2024

A Further Performance Comparison of Operations in the File A Further Performance Comparison of Operations in the File

System and in Embedded Key-Value Databases System and in Embedded Key-Value Databases

Nicholas Cunningham
Southern Adventist University, nicholascunningham@southern.edu

Follow this and additional works at: https://knowledge.e.southern.edu/mscs_reports

Recommended Citation Recommended Citation
Cunningham, Nicholas, "A Further Performance Comparison of Operations in the File System and in
Embedded Key-Value Databases" (2024). MS in Computer Science Project Reports. 12.
https://knowledge.e.southern.edu/mscs_reports/12

This Thesis is brought to you for free and open access by the School of Computing at Knowledge Exchange. It has
been accepted for inclusion in MS in Computer Science Project Reports by an authorized administrator of
Knowledge Exchange. For more information, please contact jspears@southern.edu.

https://knowledge.e.southern.edu/
https://knowledge.e.southern.edu/mscs_reports
https://knowledge.e.southern.edu/computing
https://knowledge.e.southern.edu/mscs_reports?utm_source=knowledge.e.southern.edu%2Fmscs_reports%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://knowledge.e.southern.edu/mscs_reports/12?utm_source=knowledge.e.southern.edu%2Fmscs_reports%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jspears@southern.edu

A FURTHER PERFORMANCE COMPARISON OF OPERATIONS IN THE FILE

SYSTEM AND IN EMBEDDED KEY-VALUE DATABASES

by

Nicholas A. Cunningham

A PROJECT

Presented to the Faculty of

The School of Computing at the Southern Adventist University

In Partial Fulfilment of Requirements

For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Professor Germán H. Alférez, Ph.D.

Collegedale, Tennessee

April, 2024

Harvey Alferez
4/18/2024

A FURTHER PERFORMANCE COMPARISON OF OPERATIONS IN THE FILE

SYSTEM AND IN EMBEDDED KEY-VALUE DATABASES

Nicholas A. Cunningham, M.S.

Southern Adventist University, 2024

Adviser: Germán H. Alférez, Ph.D.

A routine scenario when developing PC applications is storing data in small files or records

and then retrieving and manipulating that data with a distinctive identifier (ID). In these

scenarios, the developer can save the records using the ID as the filename or use an embedded

on-disk key-value database. However, many file systems can have performance issues when

handling many small files. As a result, developers would rather avoid depending on an

embedded database if it offers little benefit or has a detrimental effect on performance

for their use case. Our contribution is to compare several key-value databases—SQlite3,

LevelDB, RocksDB, and Berkeley DB—based on many parameters, including the file

system—NTFS, as opposed to ext4, the file system utilized on a previous project [1]—and

explain the outcomes. Moreover, the metrics and technologies to be evaluated extend the

metrics evaluated in our previous research work. We compare these key-value databases

on two machines: a solid-state drive and a hard disk drive. Our research used the Windows

Subsystem for Linux 2 (WSL 2) to work with.

v

Contents

Contents v

List of Figures vii

1 Introduction 1

1.1 Problem Statement . 1

1.2 Objectives . 2

1.3 Motivation . 3

1.4 Organization . 3

2 Background 5

2.1 Theoretical Framework . 5

2.1.1 The File System . 5

2.1.2 Embedded Databases . 8

2.1.3 File System Performance . 9

2.1.4 Storage Devices . 10

2.1.5 Windows Subsystem for Linux . 11

2.2 State of the Art . 11

2.2.1 Hines, Cunningham, and Alférez 12

2.2.2 Educational Theses . 12

vi

2.2.3 Comparing Key-Value Databases 14

2.2.4 Comparing File Systems . 14

3 Methodology 17

3.1 Benchmark Implementation . 18

3.2 Implementation of Utility Functions . 25

3.3 Taking Measurements . 33

3.4 Monitoring Performance . 33

4 Results 35

4.1 SSD Undisturbed Results . 35

4.2 HDD Undisturbed Results . 37

4.3 SSD Disturbed Results . 38

4.4 HDD Disturbed Results . 39

4.5 Discussion . 40

4.5.1 Insert Operation . 40

4.5.2 Update Operation . 40

4.5.3 Get Operation . 41

4.5.4 Remove Operation . 41

4.5.5 Space Efficiency . 42

4.5.6 File Systems vs Embedded Databases 42

4.5.7 Effects of Compression . 42

5 Conclusions and Future Work 43

Bibliography 45

vii

List of Figures

2.1 A concept map of the underpinnings of our project 6

2.2 Summary of the best storage options on the previous project 13

4.1 The results of the undisturbed SSD . 36

4.2 The results of the undisturbed HDD . 37

4.3 The results of the disturbed SSD . 38

4.4 The results of the disturbed HDD . 39

1

Chapter 1

Introduction

This chapter presents the following sections: Section 1.1 presents the problem statement,

Section 1.2 presents the objectives, Section 1.3 presents the motivation, and Section 1.4

presents the organization.

1.1 Problem Statement

Our previous research work allowed us to compare the speeds of CRUD operations and

the space efficiency of embedded databases [1]. However, that work only ran on the ext4

file system. Testing on one type of file system also led us to ask whether an outlier was

due to the embedded database or the file system that we were using. There is a need for

extending that previous work to analyze key-value storage performance on solid-state drives

(SSDs) and hard disk drives (HDDs). It is also necessary to analyze the causes of outlier

and performance degradations in the experiments.

Knowledge about the speed and efficacy of data is vital to understanding the efficacy

of the database systems, the file system, and the hardware, as well as which are the most

effective in their spatial efficiency and speed. We expect that an extension of our previous

2

research work will allow developers to delineate between the different options and make

an informed decision on which tools are best for their scenario or even which scenarios are

best for the tools they can use.

1.2 Objectives

The main objective of this project is to delineate the differences in operation speed and

space efficiency between four embedded databases and two different directory structures.

This process was evaluated on two Windows machines and performed on the NTFS file

system. Our previous research work benchmarked the speed and efficiency of an ext4 file

system, the primary file system of Linux machines. By mounting an NTFS volume and

accessing it through the Windows Subsystem for Linux 2 (WSL 2) [2], we can benchmark

the effectiveness of using an embedded database on a Windows device. We also compared

the efficacy of two storage devices– a SSD and a HDD.

These are the objectives of this project:

• Compare the speed in nanoseconds for CRUD operations of SQLite3, Berkeley DB,

RocksDB, LevelDB, and the file system. The speed will determine which of these

storage methods is most effective at storing the information quickly.

• Compare the space efficiency of the RAM at peak memory. The amount of memory

needed to execute the algorithm is important because it can determine the speed at

which applications can run.

• Test the bounds of the aforementioned key-value databases by creating a benchmark

to run on an NTFS file system and different storage devices (SSD and HDD).

• Test the impact of the aforementioned configurations while a YouTube video is running

on Google Chrome and compare it when the video is not playing.

3

• Compare the effects of compressible and incompressible data.

1.3 Motivation

Although there have been approaches to compare some of the leading embedded databases to

the file system, none have been very vast in their assessments of the ideal embedded database

or how they compare to the file system. None of these comparisons include testing while

other applications are running in the background or testing on different storage devices. Still,

minimal has been tested with multiple hard drives and programs running in the background.

This benchmark would allow people who work with databases to make informed decisions

on which embedded databases work well for which product.

1.4 Organization

This document is organized as follows:

• Chapter 2 presents a theoretical framework of the concepts for this project.

• Chapter 3 outlines the methodology for planning and constructing the benchmark.

• Chapter 4 details the project evaluation.

• Chapter 5 presents the conclusions and future work.

5

Chapter 2

Background

The theoretical framework and state-of-the-art introduce terms and include relevant works

related to the topics of embedded databases and file system performance.

2.1 Theoretical Framework

Figure 2.1 presents a concept map explaining the concepts in the research work.

2.1.1 The File System

A way to collect data is by using the file system. The file system stores and arranges data on

any digital storage device. The file system also takes control of the vacant space. Essentially,

when a file is stored on a storage medium (HDD, SSD, USB drives, etc.) that has a specific

capacity to be used both to read and write information, each byte of information on it has

a particular offset from the storage start known as an address and can be referenced by its

address. In this regard, storage can be treated as a grid with a set of numbered cells (each

cell is a single byte). And any item saved to the storage gets its own cells [3].

6

Figure 2.1: A concept map of the underpinnings of our project

There are different types of file systems. Some of the most common file systems for

Windows are NTFS, FAT, exFAT, ReFS, and HPFS [4].

NTFS (New Technology File System) was introduced in July 1993 with Windows NT

3.1 and is the most widely used file system for Windows computers. NTFS has journaling

capabilities, which means it can track changes not yet committed to the file system’s central

part by recording the changes in a “journal,” which is usually a circular log. Some of

the advantages of NTFS are the improvements over FAT in application speed and space

efficiency by compressing the applications. Some disadvantages are fragmentation issues,

flash memory (such as SSD drives) not having head movement delays, and the high access

time of mechanical hard disk drives. Hence, fragmentation has only a minor penalty. There

also might be boot issues if some system files are needed at boot time [5].

FAT (File Allocation Table) was developed in 1977 for floppy disks and later adapted

for hard disks and other devices. FAT file systems are effectively tables that act as an index

for their content. The structure is arranged into the boot sector, the File Allocation Table,

7

and the data storage area. Variants came with an increase in storage capacity. The original

8-bit FAT had 8-bit table elements and was used for Microsoft MS-DOS, a system released

by Microsoft in 1981 [6]. FAT12 and FAT16 were applied to old floppy disks and are not

extensively used today. FAT32, however, is still widely used because of its broad capability.

It can also be used on Linux and macOS devices, which makes it essential for portable

devices. FAT32 does not have native support for more than 32 GB storage capacities. For

this reason, it can be used on Windows-compatible external storage, disk partitions under

32 GB when formatted with this OS’s built-in tool, or up to 2 TB when other means are

employed to format the storage. The file system also doesn’t allow creating files that exceed

4 GB [4].

The exFAT file system is the successor to FAT32 in the FAT family of file systems. It

was introduced with Windows Embedded CE 6.0 in November 2006. Its goals were to retain

the simplicity of FAT-based file systems, enable very large files and storage devices, and

incorporate extensibility for future innovation. exFAT is, like FAT, widely compatible with

other operating systems. It also enables users to store files larger than 4 GB and has no file

or partition size limits. Although it is compatible with other operating systems, it is less

compatible than FAT. It also does not have any journaling capabilities nor the advanced

features of NTFS, which has been around since the 1990s [7].

ReFS (Resilient File System) is the latest development of Microsoft released with

Windows Server 2012 and later added to Windows 8.1. Now, it is also available for Windows

11. ReFS has been designed to address some of NTFS’s shortcomings, especially concerning

data corruption. ReFS enhances failure tolerance through its Copy-on-Write mechanism,

storing older metadata copies in different locations for easy file system integrity restoration

and data loss prevention. It also employs checksums to detect potential data corruption.

ReFS is a unique Windows format with B+-trees as an on-disk structure for representing

metadata and file data. This makes it ideal for ample storage and high availability systems.

8

Still, it lacks the stability of NTFS and compatibility with other Windows-based devices,

making it less suitable for other systems [8].

2.1.2 Embedded Databases

Embedded databases are database management systems included in an application instead

of a separate server. Thus, they do not need a separate server or even an Internet connection

to be used. Embedded databases are best used when information needs to be stored on a

local machine.

Oracle’s embedded database, Berkeley DB, is a fast, open-source database developed at

the University of California. It is used in popular open-source products like Linux and BSD

Unix, Apache Web server, and OpenOffice productivity suite [9].

Google’s LevelDB is a lightweight Bigtable storage implementation with a native C++

API and third-party API wrappers for Python, PHP, Go, Node.js, and Objective C. It is

distributed under the New BSD License and is a lightweight implementation of Bigtable

storage design [10].

Meta created RocksDB, a LevelDB fork that prides itself on its high performance, fast

storage optimization, adaptability, and basic and advanced database operations. It is also

a storage engine in other databases like ArangoDB, Ceph, CockroachDB, MongoRocks,

MyRocks, Rocksandra, TiKV, and YugabyteDB [11].

SQLite [12] is a widely deployed SQL database engine that implements a self-contained,

server-less, zero-configuration system. Its source code, primarily C, is in the public domain

and includes a native C library and command line client. It is included in various operating

systems, including Android, Dropbox, iOS, OS X, and Windows 10 [13].

9

2.1.3 File System Performance

Modern file systems like FAT, ext3, and ext4 allocate space for files in a unit of a cluster

or block, regardless of the file size. This can lead to space waste if many files are smaller

than the cluster size. Additionally, directory lookup can be affected if many files are directly

under a single folder. NTFS and ReFS are substantially better at maximum volume and file

size, allowing up to 8 PB (petabytes, 1,000x 1 terabyte and 1,000,000x 1 gigabyte) and 35

PB, respectively [14].

ReFS offers built-in resiliency, checking files as they are read or written to prevent data

corruption. It also periodically checks all files on the drive to identify and repair corrupted

data. ReFS supports large amounts of data and has a mirror-accelerated parity feature for

efficient storage and high performance [8]. Windows cannot boot from ReFS [14] because

its increased system resource consumption can create file integrity issues and an inability to

convert NTFS data to ReFS. It also lacks features like compression and encryption [8].

NTFS uses journal files to record metadata changes and restore file system consistency

after system failures. It uses access control lists and user-level encryption for security and

allows users to restrict access. NTFS also features compression, hard link, and disk quota to

save system resources and space [14]. NTFS’s primary weakness is its limited compatibility

with non-Windows operating systems and other removable device support [5].

ext4 is widely seen as the faster of the two most popular file systems, having faster file

system checks, better performance, improved file handling and fewer fragmentation issues,

lower overhead, faster operations, and improved data reliability [14]. However, it lacks

compatibility, being less popular than Windows’s NTFS [5]. It also lacks advanced file

permissions and access control, built-in encryption, and has issues with larger file sizes and

protection against data loss [15].

Memory cards typically use FAT32 file systems, which cannot store files larger than

10

4GB. NTFS, on the other hand, has higher disk utilization and faster read and write speeds.

While FAT32 is suitable for smaller-capacity memory devices, NTFS is more suited for

larger disks [16].

2.1.4 Storage Devices

A storage device is any computing hardware used for temporarily or permanently storing

data files and objects, either internal or external, to a computer, server, or computing device.

There are two types of storage devices: primary and secondary storage devices [17]. Primary

storage devices are designed to hold critical data for the operation of the device temporarily

and are internal to the device. Secondary storage is slower than primary storage due to

its lack of direct access to the CPU. However, it compensates for this by offering more

excellent data retention, being twice as cheap as primary storage, and storing significantly

more information [17].

The two secondary storage types important to this project are solid-state drives and hard

disk drives. Both are used to store and retain the device’s files and to work with the system’s

memory and processor to access data.

Hard disk drives (HDDs) consist of a spinning platter, a magnetic disk with tracks and

sectors for data storage, and an actuator arm that reads and writes data across the platter.

The platter spins on a spindle to speed up the process. Solid-state drives (SSDs) are built

from silicon memory chips; therefore, there is no rotational delay and barely any seek

time. Due to this, SSDs are more sought after for users who require high performance. A

Dell white paper [18] compared hard disk drives to solid state drives regarding price and

performance (using input/output operations per second (IOPS), which determines how many

single operations per second can be handled). They determined that hard disk drives have

comparable speeds and a better price for sequential workloads, but Solid-state drives are

11

better performers for random workloads. Solid-state drives have recently been considered

preferable because they are better than hard disk drives at loading large amounts of data but

have less capacity per drive and are more expensive.

2.1.5 Windows Subsystem for Linux

Windows Subsystem for Linux (WSL) is a feature of Windows that allows developers to

use Linux without a separate environment. It was first released on August 2, 2016. It was

used as a compatibility layer for running Linux WSL 1 and was released in August 2016 as

a compatibility layer for running Linux binary executables on the Windows kernel[19]. It is

available for Windows 10, Windows 10 LTSB/LTSC, Windows 11, Windows Server 2016,

Windows Server 2019 and Windows Server 2022. WSL 2 was announced in May 2019 [20],

introducing a true Linux kernel with Hyper-V capabilities. WSL 2 runs in a managed virtual

machine and implements the entire Linux kernel, making it compatible with more Linux

binaries than WSL 1. In June 2019, WSL 2 began to be available to Windows 10 customers

through the Windows Insider program.

2.2 State of the Art

Due to the advances in computer architecture, comparing different computer systems’

performances becomes more complicated just by looking at their specifications as computer

architecture develops. As a result, tests that enabled the comparison of various designs have

been proposed [21, 22]. These works have been essential in the birth of this research. They

have laid the groundwork for the project.

12

2.2.1 Hines, Cunningham, and Alférez

In our previous work [1], we explored the ext4 file system’s performance and compared it

to some of the more popular open-source embedded key-value databases. In the present

research work, we delve into the performance of the operations on the primary Windows file

system, NTFS, on HDDs and SSDs and determine what impact using another program in

the background will have on the benchmark results.

In [1], the benchmark results were exported to a CSV file, then moved to a chart (Figure

2.2) to show which storage option was best, either by speed (in microseconds) or in space

efficiency of the RAM. The chart was color-coded to highlight the most successful embedded

database through the different record sizes and counts. Cells are color-coded by store: yellow

is for Berkeley DB, red is for LevelDB, gray is for RocksDB, light blue is for Flat File

System, dark blue is for nested File System, and green is for SQLite. It also compared

compressible data and incompressible data. Berkeley DB was the quickest with the insert

and update features, especially among record sizes below 10 KiB. The flat file system was

faster and had larger record sizes than any key-value database. The previous project did

not compare the effects of different hard drives, nor did it compare these effects with other

programs in the background. This paper also tested on ext4, the journaling file system for

Linux. However, running our benchmark on Windows Subsystem for Linux 2 (WSL 2)

enables us to use the more popular New Technology File System (NTFS), a proprietary

journaling file system developed by Microsoft that is used on Windows devices.

2.2.2 Educational Theses

Some of the works comparable to ours are more educatory than exploratory. Najafzade

and Mariezcurrena’s work [23] is an exploratory work to ours, teaching about embedded

databases and an introduction to Berkeley DB– how to use the operations and how to create

13

Figure 2.2: Summary of the best storage options on the previous project

the database. Our research touches on this and uses many other embedded databases and

the file system. V. N. R. Patchigolla, J. Springer, and K. Lute’s [24] briefly approach the

optimal solution to storing and retrieving data from mobile devices. We expand this work

by focusing more on embedded database management systems and the impact of CRUD

operations on multiple open-source embedded database management systems.

14

2.2.3 Comparing Key-Value Databases

Slabinoha et al., in their thesis entitled Comparative Analysis of Embedded Databases Per-

formance [25], cover a comparative analysis of embedded databases and their performance

on SQLite, LMDB, and UnQLite. Specifically, they compared the interpretation of these

systems through their own Python program. This project deals with a single storage type

and uses Python software. We extend this research by using many different file systems,

types of hard drives, and the file system.

Obradovic, Dujlovic, and Kelec [26] also did a performance analysis on SQLite and

went more in-depth on its impact on the Android platform. Our research extends to the

Windows subsystem for Linux 2 (WSL 2) on a Windows device and many different hardware

platforms, and it also works on compressed and uncompressed data.

The work of Hassan and Sarhan [27] is closest to our work. Their research also looked

into four popular open-source relational embedded databases and tested them on their merits

in creating, retrieving, updating, and deleting information. The four relational embedded

databases they used are H2, HSQLDB, Apache Derby, and SQLite. We further this research

using more than one computer and more than one file system in our data.

The research from Konrad Fraczek and Malgorzata Plechawska-Wojcik [28] from the

Lublin University of Technology’s Institute of Computer Science in Lublin, Poland, com-

pares the performance of relational and non-relational databases in web applications. They

measured the speeds of read and write operations. Our research also compares update and

delete operations as well.

2.2.4 Comparing File Systems

In Sterniczuk’s work [29], he compared ext4 and NTFS in Ubuntu with SSD disks. The

analysis copies files between two partitions and measures the time of the operation in the

15

bash language. Our research furthers this by comparing using the Windows Subsystem

for Linux 2 (WSL 2), a widely used feature in the Windows operating system. A Forensic

Comparison of NTFS and FAT32 File Systems by Rubarsky, Lane, and City [30] deals with

a performance and a bare-boned research comparison and contrast of the two most popular

Windows file systems, New Technology File System (NTFS) and the File Allocation Table

(FAT32). We extend this research by comparing different storage devices– HDDs and SSDs.

17

Chapter 3

Methodology

This research work aims to create and use a tool to benchmark the performance of multiple

operations and the space efficiency of embedded databases in different scenarios. To this

end, we created a script to build an image that downloads the needed packages to run the

benchmark, prepares the device, and shows where the script is to run the benchmark. The

benchmark script then runs the benchmark and saves the results in a CSV file. Our previous

research did this on ext4 [1], while this one approaches this on NTFS. This benchmark was

done using WSL 2 and the Ubuntu distribution, as it is the most widely deployed Linux

distribution overall [31].

The benchmark algorithm generates random incompressible data with the Mersenne

Twister pseudo-random number generator (in C++ standard library). It generates random

compressible data from 250 public domain books from the Gutenberg Project [32]. It uses

pre-downloaded data for the CRUD operations (create, read, update, delete) due to an issue

with the former results: the benchmark was evaluated with a different amount of data on

every test. The benchmark algorithm also analyzes usage trends (amongst the embedded

databases and how they react to the data). Moreover, it measures the performance of the

embedded databases (measured through microseconds for the speed and percentage of the

18

RAM used in the space efficiency).

In the experiments, we used one machine with an Intel Core i5 processor, 8 GB of Crucial

RAM DDR3 1600 MHz CL11 Desktop Memory CT102464BD160B with 250 GB of a

Western Digital WD2500AAKX SATA HDD. We ran Microsoft Windows Subsystem for

Linux 2 (WSL 2) on Windows 11. We used another machine with an Intel Core i5 processor,

8 GB of Crucial RAM DDR3 1600 MHz CL11 Desktop Memory CT102464BD160B,

and 250 GB Kingston NV2 M.2 2280 NVMe Internal SSD. We ran Microsoft Windows

Subsystem for Linux 2 (WSL 2) on Windows 11. Both machines used the Peripheral

Component Interconnect or Conventional PCI bus architecture and the NTFS file system

instead of ext4, used in the previous project [1].

3.1 Benchmark Implementation

The code in Listing 3.1 performs basic tests to ensure that different store types

work correctly. The source code is available online 1. It creates various kinds

of stores (SQLite3Store, LevelDBStore, RocksDBStore, BerkeleyDBStore,

FlatFolderStore, NestedFolderStore) and tests basic operations like insert, up-

date, remove, and get on each store. It also tests the handling of null characters in keys and

values, deletes if records exist, multiple record insertion, and bulk data insertion into the

stores.

1https://github.com/thaamazingone/MastersThesis

19

1 #include <filesystem >

2 #include <memory >

3 #include <map >

4 #include <string >

5 #include <functional >

6

7 #define DOCTEST_CONFIG_IMPLEMENT

8 #include "doctest/doctest.h"

9

10 #include "stores.h"

11 #include "utils.h"

12

13 namespace tests {

14 namespace fs = std:: filesystem;

15 using fs::path;

16 using namespace std:: string_literals;

17 using std::string , std::vector , std::map , std::pair , std::

function , std:: unique_ptr , std:: make_unique;

18 using stores :: Store;

19

20 const string filepath = path("out") / "tests" / "store";

21

22 vector <function <unique_ptr <Store >() >> storeFactories{

23 [](){ return make_unique <stores :: SQLite3Store >(filepath); },

24 [](){ return make_unique <stores :: LevelDBStore >(filepath); },

25 [](){ return make_unique <stores :: RocksDBStore >(filepath); },

26 [](){ return make_unique <stores :: BerkeleyDBStore >(filepath);

},

20

27 [](){ return make_unique <stores :: FlatFolderStore >(filepath);

},

28 [](){ return make_unique <stores :: NestedFolderStore >(filepath

, 2, 3, 32); },

29 };

30

31

32 TEST_CASE("Test Stores") {

33 fs:: remove_all("out/tests");

34 fs:: create_directories("out/tests/");

35

36 SUBCASE("Basic") {

37 for (auto storeFactory : storeFactories) {

38 auto store = storeFactory ();

39 string key = utils:: randHash (32);

40

41 store ->insert(key , "value");

42 REQUIRE(store ->get(key) == "value");

43 REQUIRE(store ->count() == 1);

44

45 store ->update(key , "updated");

46 REQUIRE(store ->get(key) == "updated");

47

48 store ->remove(key);

49 REQUIRE(store ->count() == 0);

50

51 REQUIRE_THROWS(store ->get(key));

52 }

53 }

54

55 SUBCASE("Nulls") {

21

56 for (auto storeFactory : storeFactories) {

57 auto store = storeFactory ();

58

59 string key = utils:: randHash (32);

60

61 store ->insert(key , "hello\0 world"s);

62 REQUIRE(store ->get(key) == "hello\0 world"s);

63

64 store ->update(key , "\0 goodbye \0"s);

65 REQUIRE(store ->get(key) == "\0 goodbye \0"s);

66 }

67 }

68 }

69

70 TEST_CASE("Test deletes if exists") {

71 fs:: remove_all("out/tests");

72 fs:: create_directories("out/tests/");

73

74 for (auto storeFactory : storeFactories) {

75 string key = utils:: randHash (32);

76

77 fs:: remove_all(filepath);

78 {

79 auto store = storeFactory ();

80 REQUIRE(store ->filepath == filepath);

81

82 store ->insert(key , "value");

83 }

84 REQUIRE(fs:: exists(filepath));

85

86 {

22

87 auto store = storeFactory ();

88 REQUIRE_THROWS(store ->get(key));

89 }

90 }

91 }

92

93 TEST_CASE("Test multiple records") {

94 fs:: remove_all("out/tests");

95 fs:: create_directories("out/tests/");

96

97 for (auto& storeFactory : storeFactories) {

98 auto store = storeFactory ();

99 for (int i = 0; i < 25; i++) {

100 string key = utils:: randHash (32);

101 string value = utils:: randBlob (64);

102 store ->insert(key , value);

103 REQUIRE(store ->get(key) == value);

104 }

105 }

106 }

107

108 TEST_CASE("Test bulk insert") {

109 fs:: remove_all("out/tests");

110 fs:: create_directories("out/tests/");

111

112 for (auto& storeFactory : storeFactories) {

113 auto store = storeFactory ();

114 string a = utils:: randHash (32), b = utils:: randHash (32),

c = utils :: randHash (32);

115 vector <pair <string , string >> data{ {a, "1"}, {b, "2"}, {

c, "3"} };

23

116 store ->bulkInsert(data);

117 REQUIRE(store ->get(b) == "2");

118 REQUIRE(store ->count() == 3);

119 }

120 }

121 }

Listing 3.1: Code from “tests.cpp”

Listing 3.1 shows the code used to perform some basic tests. Lines 1-21 show the

necessary imports. Lines 22-30 create a factory for different storage systems. Each

factory is a lambda function that creates a unique pointer to a specific kind of Store,

such as SQLite3Store (line 23), LevelDBStore (line 24), RocksDBStore (line 25),

BerkeleyDBStore (line 26), FlatFolderStore (line 27), and NestedFolderStore (line

28). The numbers “2, 3, 32” on line 28 are the parameters to make it a nested file system.

The number “2” denotes the amount of hexadecimal characters per level. The number “3”

denotes the level of nesting or subordination of a component to another. The number “32”

is a hexadecimal representation of the ASCII character “2”. The factories are stored in a

vector of functions, and each factory is constructed with the appropriate file path for storage.

The code uses the C++ filesystem library for path manipulation and the Doctest testing

framework for testing.

Line 32 initializes the test case, and line 33 removes all existing “out/tests” directory.

Line 34 creates a new "out/tests" directory. Inside the test suite, there are two subcases.

One is “Basic” (line 36), which shows for each store factory in the storeFactories

collection, it creates a store instance (line 38), inserts a key-value pair (lines 41-42), checks

if the value can be retrieved correctly (line 42), checks the count of items in the store (line

43), updates the value of the key (lines 45-46), removes the key (lines 48-49), and verifies

that the key does not exist anymore (line 51). The other subcase is “Nulls” (line 55), which

24

shows for each store factory in the storeFactories collection, it creates a store instance

(line 57), inserts a key-value pair (line 61), checks if the value can be retrieved correctly

(line 62), and updates the value of the key (lines 64-65).

The next test case is named “Test deletes if it exists” (line 70). First, it removes

all files (line 71) and directories inside the "out/tests" directory. Then, it creates the

"out/tests" directory if it does not exist (line 72). It iterates over a list of store factories

and performs the following actions for each factory. First, it generates a random key, then it

removes any existing file at a specific filepath (line 77), creates a store using the current

factory (lines 79-80), inserts a key-value pair into the store (line 82), and then closes the

store. It then checks if the file exists at the specified filepath (line 84), and finally tries to

retrieve the value associated with the key from the store (line 87) and expects an exception

to be thrown (line 88).

The next test involves inserting multiple records into different data stores. It removes

any existing test data (line 94), creates a directory for test output (line 95), and then iterates

over a list of store factories (line 97). For each store factory, it creates a store instance and

inserts 25 random records into it (lines 98-102). It then tests that each inserted record can be

retrieved correctly by verifying that the retrieved value matches the inserted value using the

REQUIRE macro (line 103). The REQUIRE macro ensures the pointer value is correct for the

benchmark to work.

The second is a unit test for a data store implementation’s “bulk insert” functionality. It

removes any existing test data directory (line 109) and creates a new one (line 110). It then

iterates over different store factories, creates a new store instance using each factory (line

113), generates random strings for keys (line 114), creates a vector of key-value pairs (line

115), calls the bulkInsert method of the store with this data (line 116), and finally asserts

that the store retrieves the correct value for a specific key and that the total count of items

in the store is 3 (lines 117-118). The bulkInsert method is the way that this code inserts

25

large amounts of code into a database.

3.2 Implementation of Utility Functions

The code also provides various utility functions, as shown in Listing 3.2, for calculating

disk usage, measuring time, obtaining peak memory usage, and formatting file sizes in a

human-readable format. Specifically, it includes functions for generating random blobs

of data, generating random hashes, generating keys based on SHA1 hash, measuring the

execution time of a function, calculating disk usage of a file or directory, obtaining peak

memory usage of the process, and formatting file sizes in a human-readable format.

1 #include <string >

2 #include <random >

3 #include <functional >

4 #include <chrono >

5 #include <iomanip >

6 #include <filesystem >

7 #include <vector >

8 #include <cmath >

9 #include <algorithm >

10 #include <fstream >

11 #include <sys/resource.h>

12

13 #include <boost/process.hpp >

14 #include <boost/uuid/detail/sha1.hpp >

15

16 #include "utils.h"

17

18 namespace utils {

19 namespace fs = std:: filesystem;

26

20 using fs::path;

21 using std::string , std::vector , std::ofstream , std:: ifstream;

22 namespace chrono = std:: chrono;

23 namespace process = boost :: process;

24 using boost:: uuids:: detail ::sha1;

25

26 std:: random_device randomDevice;

27 std:: mt19937 randGen(randomDevice ());

28

29 string randBlob(size_t size) {

30 std:: uniform_int_distribution <unsigned char > randChar(0, 0

xFF);

31 string blob;

32 blob.resize(size);

33 std:: generate(blob.begin(), blob.end(), [&]() { return

randChar(randGen); });

34 return blob;

35 }

36

37 string randBlob(Range <size_t > size) {

38 return randBlob(randInt(size.min , size.max));

39 }

40

41 ClobGenerator :: ClobGenerator(const path& textFolder) :

textFolder(textFolder), filesTotalSize (0) {

42

43 for (auto file : fs:: directory_iterator(this ->textFolder)) {

44 if (file.path().extension () == ".txt") {

45 this ->fileSizes.push_back ({file.path(), file.

file_size ()});

27

46 filesTotalSize += file.file_size ();

47 }

48 }

49 }

50

51 string ClobGenerator :: operator ()(size_t size) {

52 size_t start = randInt <size_t >(0, this ->filesTotalSize -

size);

53 size_t end = start + size;

54

55 size_t pos = 0;

56 auto fileInfo = this ->fileSizes.begin();

57 for (; pos + fileInfo ->size < start; fileInfo ++) {

58 pos += fileInfo ->size;

59 }

60

61 string clob(size , ’\0’);

62 while (pos < end) {

63 ifstream file(fileInfo ->file , ifstream ::in ifstream ::

binary);

64 if (pos < start) {

65 file.seekg(start - pos);

66 pos = start;

67 }

68

69 auto bufferPos = pos - start;

70 auto remainingFile = fileInfo ->size - file.tellg();

71 file.read(&clob[bufferPos], std::min(remainingFile , size

- bufferPos)); // read up to EOF or end of buffer

72

73 pos += remainingFile;

28

74 fileInfo ++;

75 }

76

77 return clob;

78 }

79

80 string ClobGenerator :: operator ()(Range <size_t > size){

81 return (*this)(randInt(size.min , size.max));

82 }

83

84 string intToHex(long long i, int width) {

85 std:: stringstream stream;

86 stream << std:: setfill(’0’) << std::setw(width) << std::hex

<< i;

87 return stream.str();

88 }

89

90 string randHash(int size) {

91 std:: uniform_int_distribution <unsigned char > randNibble (0x0 ,

0xF);

92 string hash;

93 hash.resize(size);

94 for (int i = 0; i < size; i += 1)

95 hash[i] = intToHex(randNibble(randGen), 1)[0];

96 return hash;

97 }

98

99 string genKey(size_t i) {

100 sha1 hash;

101 hash.process_bytes(reinterpret_cast <void*>(&i), sizeof(i));

29

102 hash.process_byte (136);

103 sha1:: digest_type digest;

104 hash.get_digest(digest);

105

106 std:: stringstream ss;

107 for (auto part : digest)

108 ss << std:: setfill(’0’) << std::setw(sizeof(part) * 2)

<< std::hex << part;

109 return ss.str().substr(0, 32);

110 }

111

112

113 chrono :: nanoseconds timeIt(std::function <void()> func) {

114 auto start = chrono :: steady_clock ::now();

115 func();

116 auto stop = chrono :: steady_clock ::now();

117 return chrono :: duration_cast <chrono :: nanoseconds >(stop -

start);

118 }

119

120

121 long long diskUsage(const path& filepath) {

122 process :: ipstream out;

123 process :: child du(process :: search_path("du"), "-s", "--block

-size=1", filepath.native (), process :: std_out > out);

124

125 string outputStr;

126 string line;

127 while (out && std:: getline(out , line) && !line.empty ())

128 outputStr += line + "\n";

30

129 du.wait();

130

131 return std::stol(outputStr);

132 }

133

134 size_t getPeakMemUsage () {

135 struct rusage info;

136 getrusage(RUSAGE_SELF , &info);

137 return info.ru_maxrss;

138 }

139

140 void resetPeakMemUsage () {

141 ofstream clearRefs("/proc/self/clear_refs");

142 clearRefs << "5";

143 }

144

145

146 string prettySize(size_t size) {

147 vector <string > units{"B", "KiB", "MiB", "GiB"};

148 int unitI = std::min <size_t >(std::log(size) / std::log (1024)

, units.size());

149 int unitSize = std::pow(1024 , unitI);

150

151 double sizeInUnit = size / ((double) unitSize);

152 int leftOfDecimal = std::log(sizeInUnit) / std::log (10);

153

154 std:: stringstream ss;

155 ss << std:: setprecision(leftOfDecimal + 2) << sizeInUnit <<

units[unitI];

156 return ss.str();

157 }

31

158 }

Listing 3.2: Code from “utils.cpp”

Listing 3.2 refers to the necessary imports (lines 1-25) and initializes a Mersenne Twister

pseudo-random number generator [33] with a seed from a random device (lines 26-27).

Next, the code defines a function randBlob (line 29) that generates a random blob of

binary data of a given size (lines 30-33). It uses a uniform distribution (lines 30-32) to

generate random characters and stores them in a string (line 33). Additionally, an overloaded

version of randBlob (lines 37-39) takes a range of sizes (line 37) and generates a random

blob within that range (line 38). The ClobGenerator class constructor initializes the object

by caching the file list of text files in a specified folder, storing their paths and sizes in a

vector (lines 41-49).

The code then defines an overloaded function call operator for the ClobGenerator class.

The function takes a size_t parameter size and generates a string of the specified size by

reading content from multiple files (lines 51-61). It determines a random start position

within the total size of the files (line 62) and then reads content from the files to construct the

string (lines 62-67). It reads the content of the files in chunks, starting from the calculated

start position and stopping when the specified size is reached (lines 69-78).

Then, the function call operator is overloaded for the ClobGenerator class. It takes

a Range<size_t> object size as input, representing a range of sizes (line 80). It then

generates a random size within this range using randInt(size.min, size.max) and

calls the function call operator again with this randomly generated size to generate a string

(line 81). Finally, it returns the generated string (line 81).

The next portion of the code takes a long long integer i and converts it to a hexadecimal

string with a specified width. The function intToHex uses a stringstream, or a stream class

to operate on strings, to convert the integer to hexadecimal format (line 85) and pads the

32

result with zeros to match the specified width (line 86). Finally, it returns the hexadecimal

string (line 87). The final portion of this code segment generates a random hash of a specified

size (line 90) by creating random nibbles (4-bit hexadecimal numbers) and converting them

to hexadecimal characters. The randHash function takes an integer size as input (line 93)

and returns a string representing the random hash of the specified size (line 96).

The next portion has the genKey string, which generates a SHA-1 hash (lines 100-101)

from the input size t i concatenated with an arbitrary salt value of 136 (line 102). It then

converts the hash digest into a string representation (lines 103-106) and returns the first 32

characters of the resulting string (line 109). The next function measures the time taken for a

given function func to execute by capturing the start and stop time using the chrono library

in C++ (line 113). The function timeIt takes a std::function<void()> parameter func,

representing the function to be timed. It then executes the function func, captures the start

(line 114) and stop (line 116) time, calculates the duration between them, and returns the

duration in nanoseconds (line 117). The diskUsage function calculates the disk usage of

a specified file or directory by invoking the “du” command, which returns the disk usage,

with specific arguments and capturing its output (line 123). The output is then processed to

extract the total disk usage value (lines 127-129), which is converted to a long long integer

and returned (line 131). The next function, getPeakMemUsage, returns the peak memory

usage of the current process in kilobytes (line 137). It achieves this by using the getrusage

function with the RUSAGE_SELF parameter to get resource usage statistics for the current

process (line 136) and then returning the ru_maxrss field from the struct rusage, which

represents the maximum resident set size in kilobytes (line 137). This code opens the

corresponding file (line 141) and writes the number “5” to it (line 142), which clears the

memory references. The final function, prettySize, takes a size in bytes as input (lines

146-147) and converts it to a human-readable format with units like B, KiB, MiB, or GiB,

depending on the size (lines 148-152). It calculates the appropriate unit (e.g., KiB for sizes

33

between 1024 and 1048575 bytes) and formats the size accordingly (lines 154-158).

3.3 Taking Measurements

This study compares four embedded key-value databases: SQLite, LevelDB, RocksDB, and

Berkeley DB. It treats SQLite as a key-value database with a primary key column and a

value column. The databases use two storage strategies: flat and nested. Records in flat

storage are kept in one directory, while nested storage uses a hierarchical file structure. Each

level of the nested storage strategy has two hexadecimal characters, and we opted for three

classes because the depth of 3 was chosen to hold up to 16,777,216 records while keeping

around 256 leaf nodes. SQLite and Berkeley DB C interfaces return invalid char* pointers

after database operations, specifically wrappers copy buffer memory, adding overhead. This

could be avoided if developers only need data briefly, but most common use cases involve

copying buffer memory to avoid hanging pointers and memory safety issues. Our study

measures the time taken for fundamental key-value operations, creating, reading, updating,

and deleting, recording average, minimum, and maximum values in nanoseconds. Peak

memory usage was also measured for each combination. Space efficiency was also measured

by comparing the amount of data put in versus the actual space taken up on disk. Embedded

databases can add storage overhead or reduce size, while file systems can waste space.

3.4 Monitoring Performance

This study measured the time taken for fundamental key-value operations: create, read,

update, and delete, running each operation 1,000 times and recording average, minimum,

and maximum values in microseconds. The file system, Berkeley DB, RocksDB, LevelDB,

SQLite3, on record sizes that are less than a KiB, between 1 and 10 KiB, between 10 and

34

100 KiB, and between 100 KiB and 1 MiB, and also 100 records, 1000 records, 10000

records, 100000 records, and 1000000 records. This process was also done with a Google

Chrome tab watching a YouTube video running in the background to determine which is

fastest. After this process is finished. The code is then exported to a CSV file and moved to

a table.

35

Chapter 4

Results

Experiments for the benchmark were executed on both a hard drive and a solid-state drive.

The results shown in this chapter are divided based on whether the YouTube video was

running on Google Chrome when the benchmark was being used. In case the YouTube

video was operating in the background while the benchmark was being run, it was labeled

as “disturbed”; otherwise, it was labeled as “undisturbed”.

4.1 SSD Undisturbed Results

Figure 4.1 refers to the undisturbed SSD results of the lowest average of 1,000 averages of

each operation with either 100, 1,000, 10,000, 100,000, or 1,000,000 records. The results

show that Berkeley DB remained among the fastest for the insert and update operations

under compressible and incompressible data. As the number of records increased and the

record sizes increased, both the folder stores (Nested and Flat Folder stores) were quicker.

LevelDB was better for smaller record sizes for the get operations, and RocksDB and the

folder stores were better for larger record sizes. The 10,000 record results for the larger

sizes favor the folder stores, especially the remove operation. SQLite was the most efficient

36

for smaller record amounts, and RocksDB was the most efficient for larger record amounts.

Figure 4.1: The results of the undisturbed SSD

37

4.2 HDD Undisturbed Results

Figure 4.2 refers to the undisturbed HDD results of the lowest average of 1,000 averages

of each operation with either 100, 1,000, 10,000, 100,000, or 1,000,000 records. The flat

folder was better on some record amounts in the insert operation on the hard disk drive than

on the solid-state drive. The flat folder was more efficient in the small record counts, and

RocksDB was more efficient in the larger record counts.

Figure 4.2: The results of the undisturbed HDD

38

4.3 SSD Disturbed Results

Figure 4.3 refers to the results while a YouTube video is continuously running in the

background on Google Chrome. While many of the leaders in speed for the operations were

the same, SQLite3 became more efficient in the disturbed results.

Figure 4.3: The results of the disturbed SSD

39

4.4 HDD Disturbed Results

Figure 4.4 refers to the results while separate programs ran in the background. While many

of the leaders in speed for the operations were the same, SQLite3 became more efficient in

the disturbed results.

Figure 4.4: The results of the disturbed HDD

40

4.5 Discussion

Key-value store performance is a complicated problem that depends heavily on a particular

workload, as seen by this benchmark. Developers should generally use an embedded

database, especially one with compression, rather than the file system if space efficiency

is a priority. Berkeley DB is among the best performers on our benchmark if speed is the

primary consideration; it is the fastest or very close to it in most scenarios and operations,

specifically inserting and updating operations.

4.5.1 Insert Operation

Berkeley DB, with an average of roughly 1,025 ns per operation and 403 ns for incom-

pressible data, was the quickest average of the Insert operation categories for the SSD

and HDD, both with and without a background program running. For both compressible

and incompressible data, the nested and flat folder solutions came in second and third,

respectively. The incompressible data was around 105% faster than the compressible data,

and the data that remained unchanged regardless of the background program was also slower.

Incompressible data was around 104% faster than compressible data, with the largest speed

difference between the two being less than 1 KiB.

4.5.2 Update Operation

Berkeley DB was the quickest average of the Update operation categories for the SSD

and HDD, averaging roughly 2,289 ns per operation for compressible data and 1,289 ns

for incompressible data, both with and without a background program. Regarding both

compressible and incompressible data, the nested and flat folder alternatives came in second

and third. Uncompressed data, regardless of whether a background program was running,

performed around 103% slower than data that was compressed. Incompressible data was

41

roughly 103% faster than compressible data, with the largest speed difference being the less

than 1 KiB section.

4.5.3 Get Operation

With a program running in the background or not, the flat folder choice had the fastest

average of all the Get operation categories for the SSD and HDD, averaging roughly 1,562

ns per operation for compressible data. However, LevelDB was the fastest average for

compressible data on both the SSD and HDD, averaging roughly 472 ns per operation for

incompressible data, both with and without an application running in the background. For

compressible data, the BerkeleyDB and LevelDB options were second and third, respectively,

while the flat and nested file options ranked second and third fastest for incompressible

data. Whether or not a background program was running, compressible data performed

approximately 120% slower than incompressible data. Data smaller than 1 KiB showed the

largest speed disparity between compressible and incompressible data—with incompressible

data running almost 205% quicker.

4.5.4 Remove Operation

With an average removal operation time of 360 ns for compressible data and 1,550 ns

for incompressible data, the nested folder choice was the fastest of the Remove operation

categories for the SSD and HDD, both with and without a background program. For both

compressible and incompressible data, the flat folder option and Berkeley DB ranked second

and third, respectively. Compressible data performed around 103% slower than incompress-

ible data, and data remained unchanged regardless of the presence of a background program.

Between 100 KiB and 1 MiB, there was a notable speed differential between compressible

and incompressible data; in this range, incompressible data was around 185% quicker.

42

4.5.5 Space Efficiency

With an average space efficiency of about 84%, SQLite was the most space-efficient option

for incompressible data on both SSD and HDD devices. Berkeley DB came next, while the

flat folder option came in third. With an average space efficiency of 90%, LevelDB was the

most space-efficient database for compressible data on SSD and HDD devices, followed

by SQLite3 and RocksDB. The efficiency of compressible data is 111% higher than that of

incompressible data. Between 100 KiB and 1 MiB, compressible data was around 115%

more efficient in terms of space efficiency.

4.5.6 File Systems vs Embedded Databases

When determining whether to use an embedded database or a file system, the file system

was among the quickest speeds in the insert and remove operations for compressible and

incompressible data. However, the fastest speed on average for the insert, update, and

remove options was consistently Berkeley DB. Space efficiency was consistent between

LevelDB, RocksDB, and SQLite3.

4.5.7 Effects of Compression

Although compression fully slowed down activities, it exchanged speed for space efficiency.

Compared to its compressible equivalent, the average insert speed for incompressible data

was around 95% faster. The average update incompressible insert speed was about 98%

faster than the compressible speed. The average get operation incompressible speed was

approximately 155% faster than the compressible speed. Compared to the compressible

speed, the average removal operation incompressible speed was around 120% faster. On the

other hand, compressible data had an average space efficiency of 109% more efficient than

incompressible data.

43

Chapter 5

Conclusions and Future Work

This study compared the following key-value databases on NTFS: SQLite3, LevelDB,

RocksDB, Berkeley DB, and the file system. Our results showed that Berkeley DB was

the fastest among smaller record sizes among all operations for both compressible and

incompressible data in both HDD and SSD. The flat and file folder options, along with

RocksDB and LevelDB were the fastest options for larger record sizes among all operations

for both compressible and incompressible data in both HDD and SSD. Larger record counts

favor the nested folder option, and smaller record counts favor the flat folder option for both

incompressible and compressible data in both HDD and SSD.

SQLite is more space-efficient for smaller record counts, while RocksDB is more space-

efficient for bigger record counts. Some record counts, specifically 10,000 in the compressed

data, notably suit LevelDB for compressible data.

This work differs from our previous research [1] due to modifications to random data

storage. The random access data during the previous benchmark’s execution varied with

each run, potentially affecting the results. Storage modifications made on that work each

time the benchmark was performed may also cause file sizes to change, so the earlier work

was not compared.

44

The future work of this project is to create a benchmark for Android devices. Although

SQLite is seen as the best database management system for Android devices due to its light

weight and efficiency [34], it would be ideal to evaluate its efficiency on Android tablets or

phones.

Also, we expect to consider to play a video in the background instead of playing it in

YouTube on the experiments. Since the computer performance may be affected by network

latency, we believe that playing the video in the background, without Internet, may help

focus on the machine performance itself.

Finally, the project could be compared directly on Windows instead of WSL 2, as

WSL 2 on Ubuntu has measurable overhead in code compilation performance and real-

world scenarios. Michael Larabel’s benchmark [35] acknowledges WSL2’s competitive

performance with Ubuntu 20.04 LTS and Ubuntu 21.10 but notes its slower performance,

necessitating future code rewriting for Windows execution.

45

Bibliography

[1] J. Hines, N. Cunningham, and G. H. Alférez, “Performance comparison of operations

in the file system and in embedded key-value databases,” Lecture Notes in Networks

and Systems, p. 386–400, Aug 2023. (document), 1.1, 2.2.1, 3, 5

[2] C. Loewen, M. Wojciakowski, N. Sharma, Kyle, A. Junker, A. Jenks, G. Álvarez,

D. Coulter, and A. Nasim, “Get started mounting a Linux disk in WSL 2,” Jul 2023.

[Online]. Available: https://learn.microsoft.com/en-us/windows/wsl/wsl2-mount-disk

1.2

[3] N. Stepanets, “Introduction to file systems,” UFS Explorer, 04 2023. [Online].

Available: https://www.ufsexplorer.com/articles/file-systems-basics/ 2.1.1

[4] ——, “The file systems of Windows,” UFS Explorer, 04 2023. [Online]. Available:

https://www.ufsexplorer.com/articles/windows-file-systems/ 2.1.1

[5] J. Gerend and J. Barnett, “NTFS overview,” learn.microsoft.com, 03 2023.

[Online]. Available: https://learn.microsoft.com/en-us/windows-server/storage/

file-server/ntfs-overview 2.1.1, 2.1.3

[6] M. Corporation, Microsoft BASIC-80 Version 5.0. Microsoft, 1979. 2.1.1

[7] S. Cai, J. Kennedy, A. Ashcraft, F. Bristrow, A. Gubin, J. Martinez, K. Sharkey,

S. Gupta, and N. Adman, “exFAT file system specification,” learn.microsoft.com, 10

https://learn.microsoft.com/en-us/windows/wsl/wsl2-mount-disk
https://www.ufsexplorer.com/articles/file-systems-basics/
https://www.ufsexplorer.com/articles/windows-file-systems/
https://learn.microsoft.com/en-us/windows-server/storage/file-server/ntfs-overview
https://learn.microsoft.com/en-us/windows-server/storage/file-server/ntfs-overview

46

2022. [Online]. Available: https://learn.microsoft.com/en-US/windows/win32/fileio/

exfat-specification 2.1.1

[8] R. Harwood, B. Smolen, M. Dhiman, S. Leavitt, K. Downie, K. Wester-Ebbinghaus,

and E. Ross, “Resilient file system (ReFS) overview,” learn.microsoft.com, 02 2023.

[Online]. Available: https://learn.microsoft.com/en-us/windows-server/storage/refs/

refs-overview 2.1.1, 2.1.3

[9] G. Burd, “Berkeleydb,” Dec 2012. [Online]. Available: https://github.com/berkeleydb/

libdb/releases 2.1.2

[10] A. Sullivan, “LevelDB,” Jan 2022. [Online]. Available: https://github.com/google/

leveldb 2.1.2

[11] I. Meta Platforms, “RocksDB.” [Online]. Available: https://rocksdb.org/ 2.1.2

[12] S. Consortium, “SQLite,” Nov 2007. [Online]. Available: https://www.sqlite.org 2.1.2

[13] ——, “Most widely deployed SQL database engine,” Dec 2007. [Online]. Available:

https://www.sqlite.org/mostdeployed.html 2.1.2

[14] S. Dan-Peng and D. Dan-Li, “ReFS vs NTFS vs FAT32, which one should you use?”

EaseUS, 08 2023. [Online]. Available: https://www.easeus.com/computer-instruction/

refs-vs-ntfs-vs-fat32.html 2.1.3

[15] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas, and L. Vivier, “The

new EXT4 filesystem: current status and future plans,” in Proceedings of the Linux

symposium, vol. 2. Citeseer, 2007, pp. 21–33. 2.1.3

[16] M. Tariq, “Differences between the NTFS and FAT32 memory card file

systems huawei support global,” consumer.huawei.com. [Online]. Available:

https://consumer.huawei.com/en/support/content/en-us00414645 2.1.3

https://learn.microsoft.com/en-US/windows/win32/fileio/exfat-specification
https://learn.microsoft.com/en-US/windows/win32/fileio/exfat-specification
https://learn.microsoft.com/en-us/windows-server/storage/refs/refs-overview
https://learn.microsoft.com/en-us/windows-server/storage/refs/refs-overview
https://github.com/berkeleydb/libdb/releases
https://github.com/berkeleydb/libdb/releases
https://github.com/google/leveldb
https://github.com/google/leveldb
https://rocksdb.org/
https://www.sqlite.org
https://www.sqlite.org/mostdeployed.html
https://www.easeus.com/computer-instruction/refs-vs-ntfs-vs-fat32.html
https://www.easeus.com/computer-instruction/refs-vs-ntfs-vs-fat32.html
https://consumer.huawei.com/en/support/content/en-us00414645

47

[17] L. Renteria, “Primary Storage vs Secondary Storage: What’s the Differ-

ence?” Arcserve, 01 2023. [Online]. Available: https://www.arcserve.com/blog/

primary-storage-vs-secondary-storage-whats-difference 2.1.4

[18] V. Kasavajhala, “Solid state drive vs. hard disk drive price and performance study,”

Proc. Dell Tech. White Paper, pp. 8–9, 2011. 2.1.4

[19] S. Leeks, Windows Subsystem for Linux 2 (WSL 2) Tips, Tricks, and Techniques:

Maximise productivity of your Windows 10 development machine with custom

workflows and configurations. Packt Publishing, 2020. [Online]. Available:

https://books.google.com/books?id=8RYFEAAAQBAJ 2.1.5

[20] C. Loewen, “Announcing wsl 2,” May 2019. [Online]. Available: https:

//devblogs.microsoft.com/commandline/announcing-wsl-2/ 2.1.5

[21] P. J. Fleming and J. J. Wallace, “How not to lie with statistics: the correct way

to summarize benchmark results,” Communications of the ACM, vol. 29, no. 3, p.

218–221, Mar 1986. 2.2

[22] J. Gray, The Benchmark Handbook. Morgan Kaufmann Publishers, 1993. 2.2

[23] N. Najafzade and A. Z. Mariezcurrena, “Embedded Databases with Berkeley DB,”

Universite Libre de Bruxelles, Universitr d’Europe. 2.2.2

[24] V. N. R. Patchigolla, J. Springer, and K. Lutes, “Embedded database management

performance,” in 2011 Eighth International Conference on Information Technology:

New Generations, 2011, pp. 998–1001. 2.2.2

[25] M. Slabinoha, S. Melnychuk, I. Manuliak, and B. Pashkovskyi, “Comparative analysis

of embedded databases performance on single board computer systems using python,”

https://www.arcserve.com/blog/primary-storage-vs-secondary-storage-whats-difference
https://www.arcserve.com/blog/primary-storage-vs-secondary-storage-whats-difference
https://books.google.com/books?id=8RYFEAAAQBAJ
https://devblogs.microsoft.com/commandline/announcing-wsl-2/
https://devblogs.microsoft.com/commandline/announcing-wsl-2/

48

in 2022 IEEE 17th International Conference on Computer Sciences and Information

Technologies (CSIT), 2022, pp. 222–225. 2.2.3

[26] N. Obradovic, A. Kelec, and I. Dujlovic, “Performance analysis on Android SQLite

Database,” 2019 18th International Symposium INFOTEH-JAHORINA (INFOTEH), pp.

1–4, 2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:159043379

2.2.3

[27] H. B. Hassan and Q. I. Sarhan, “Performance evaluation of relational embedded

databases: an empirical study,” Innovaciencia, vol. 6, no. 1, pp. 1–8, 2018. 2.2.3

[28] K. Fraczek and M. Plechawska-Wojcik, “Comparative analysis of relational and non-

relational databases in the context of performance in web applications,” in Beyond

Databases, Architectures and Structures. Towards Efficient Solutions for Data Analysis

and Knowledge Representation: 13th International Conference, BDAS 2017, Ustroń,

Poland, May 30-June 2, 2017, Proceedings 13. Springer, 2017, pp. 153–164. 2.2.3

[29] B. Sterniczuk, “Comparison of EXT4 and NTFS filesystem performance,” Journal of

Computer Sciences Institute, vol. 25, pp. 297–300, 2022. 2.2.4

[30] K. L. Rusbarsky and K. City, “A forensic comparison of NTFS and FAT32 file systems,”

Marshall Univ, vol. 29, 2012. 2.2.4

[31] Ubuntu, “Ubuntu pc operating system — ubuntu,” 2020. [Online]. Available:

https://ubuntu.com/desktop 3

[32] B. Stroube, “Literary freedom: Project Gutenberg,” XRDS: Crossroads, The ACM

Magazine for Students, vol. 10, no. 1, pp. 3–3, 2003. 3

[33] M. Matsumoto and T. Nishimura, “Mersenne twister: A 623-dimensionally

equidistributed uniform pseudo-random number generator,” ACM Trans. Model.

https://api.semanticscholar.org/CorpusID:159043379
https://ubuntu.com/desktop

49

Comput. Simul., vol. 8, no. 1, p. 3–30, jan 1998. [Online]. Available:

https://doi.org/10.1145/272991.272995 3.2

[34] K. Dhokale, N. Bange, S. Pradip, and S. Malave, “Implementation of SQL server

based on SQLite engine on android platform,” International Journal of Research in

Engineering and Technology, vol. 3, no. 4, pp. 8–14, 2014. 5

[35] M. Larabel, “Windows 11 WSL2 Performance Is Quite Competitive against

Ubuntu 20.04 LTS / Ubuntu 21.10,” Sep 2021. [Online]. Available: https:

//www.phoronix.com/review/windows11-wsl2-good 5

https://doi.org/10.1145/272991.272995
https://www.phoronix.com/review/windows11-wsl2-good
https://www.phoronix.com/review/windows11-wsl2-good

	A Further Performance Comparison of Operations in the File System and in Embedded Key-Value Databases
	Recommended Citation

	Contents
	List of Figures
	Introduction
	Problem Statement
	Objectives
	Motivation
	Organization

	Background
	Theoretical Framework
	The File System
	Embedded Databases
	File System Performance
	Storage Devices
	Windows Subsystem for Linux

	State of the Art
	Hines, Cunningham, and Alférez
	Educational Theses
	Comparing Key-Value Databases
	Comparing File Systems

	Methodology
	Benchmark Implementation
	Implementation of Utility Functions
	Taking Measurements
	Monitoring Performance

	Results
	SSD Undisturbed Results
	HDD Undisturbed Results
	SSD Disturbed Results
	HDD Disturbed Results
	Discussion
	Insert Operation
	Update Operation
	Get Operation
	Remove Operation
	Space Efficiency
	File Systems vs Embedded Databases
	Effects of Compression

	Conclusions and Future Work
	Bibliography

