2002

An Analysis Of The Development And Application Of Orthogonal Polynomials With An Emphasis On The Legendre Polynomials

Francis Radnoti

Follow this and additional works at: https://knowledge.e.southern.edu/senior_research

Part of the Applied Mathematics Commons

Recommended Citation
Radnoti, Francis, 'An Analysis Of The Development And Application Of Orthogonal Polynomials With An Emphasis On The Legendre Polynomials' (2002). Senior Research Projects. 64.
https://knowledge.e.southern.edu/senior_research/64

This Article is brought to you for free and open access by the Southern Scholars at KnowledgeExchange@Southern. It has been accepted for inclusion in Senior Research Projects by an authorized administrator of KnowledgeExchange@Southern. For more information, please contact jspears@southern.edu.
An Analysis Of The Development And Application Of Orthogonal Polynomials With An Emphasis On The Legendre Polynomials

Francis Radnoti
Southern Adventist University
April 19, 2002
Outline

I. Introduction
 A. Purpose of Paper
 B. Relevance of Orthogonal Polynomials

II. Least Squares Approximation Problem and Linear Independence
 A. Least Squares Approximation Problem
 B. Linear Independence Theorems and Definitions

III. Orthogonal Sets of Functions
 A. Weight Function
 B. Orthogonal vs. Orthonormal
 C. Even and Odd Function Properties
 D. Orthogonal Polynomial Construction Based on the Gram-Schmidt Process
 E. Induction Proof for Orthogonal Polynomial Construction Method
 F. Linear Independence Corollary

IV. Legendre Polynomials (Theory)
 A. Simplified Construction Method
 B. Recursive Formula for Special Case
 C. Classical Legendre Polynomials
 D. Least Square Approximation on (-1,1)

V. Orthogonal Polynomials (Applications)
 A. Legendre Polynomials
 B. Other Families of Polynomials
 C. Modern Research
I. Introduction:

The purpose of this paper is to first and foremost explain the concept of orthogonal polynomials to the student who has no significant background in numerical analysis or theoretical physics. Commencing with the common problem of finding a polynomial approximation to a given function on a closed interval, I will endeavor to show a construction of concepts and theorems from calculus, linear algebra, and real analysis which develops the importance of orthogonal polynomials. After proving a popular method for constructing a family of orthogonal polynomials, we will then use the method to derive one of the most basic families, the Legendre polynomials. We will then take a look at the first few Legendre polynomials and examine recurrence relations for generating new ones.

This family has many interesting applications in different fields of mathematics and physics. The most common of these is the role they play in the least square approximation problem on the interval (-1,1). In fact, the set of Legendre polynomials up to degree n ultimately provides the best least square approximation to a function $f(x)$ on (-1,1).\(^1\)

The influence of Legendre polynomials also extends to Gaussian quadrature nodes, differential equations, and spherical harmonics, among other topics. And when expanding our outlook to all families of orthogonal polynomials, the topics are almost endless. Consequently, the field of orthogonal polynomials is useful in a variety of ways, and quite valuable to mathematicians, statisticians, and physicists alike.

\(^1\) Hildebrand 274
II. Least Squares Approximation Problem and Linear Independence

When we speak of least squares approximation, we want to find, for a given a function \(f \) in \(C[a,b] \), a polynomial of degree at most \(n \) that will minimize the expression \(\int_{a}^{b} [f(x) - P_n(x)]^2 \, dx \) across the interval \([a,b]\).

See Section (1)

As you can see, for each \(P_n \), this method requires us to solve an \((n+1) \) by \((n+1) \) matrix. Unfortunately, solving this matrix for \(P_n \) does not lessen the amount of work needed to solve for \(P_{n+1} \).\(^2\) We will now look at the orthogonal polynomials approach to this problem. First we will need a few definitions and theorems regarding linear independence.

See Section (2)

III. Orthogonal Sets of Functions

Here, we will look at some definitions and theorems that show the properties of orthogonal polynomials. The first definition is that of a weight function, which is very important as it is one of the main characteristics that distinguishes between families of orthogonal polynomials. For instance, the Legendre polynomials that we will be dealing with have the simple weight function \(w(x) = 1 \) on \([-1, 1]\). However, the Jacobi, Chebyshev, and Gegenbauer polynomials have more complicated weight functions, usually in the form of \((1 - x^2)^k \) for some predetermined \(k \). The Hermite and Laguerre polynomials have exponential weight functions.\(^3\)

See Section (3)

\(^2\) Burden 451
\(^3\) Beckmann 41
Before we move on to the construction of orthogonal sets of functions, we need to show some basic properties of even and odd functions that will simplify our work later.

Thm 3: If f and g are even functions, then fg is even.

Proof: Suppose f and g are even functions.

Then $fg(-x) = f(-x)g(-x) = f(x)g(x) = fg(x)$. Thus fg is even.

Thm 4: If f and g are odd functions, then fg is even.

Proof: Suppose f and g are odd functions.

Then $fg(-x) = f(-x)g(-x) = (-f(x))(-g(x)) = fg(x)$. Thus fg is even.

Thm 5: If f is an odd function and g is an even function, then fg is odd.

Proof: Suppose f is odd and g is even.

Then $fg(-x) = f(-x)g(-x) = (-f(x))g(x) = -f(x)g(x) = -fg(x)$. Thus fg is odd.

Also, for future reference, we need to discuss the outcome of even and odd integrals over symmetric intervals. Since the Legendre polynomials are defined on the symmetric interval $[-1,1]$, it is evident that this will come in handy later.

See Section (4)

Now, the following theorem, based on the Gram-Schmidt process\(^4\), describes how to construct orthogonal polynomials on a closed interval $[a, b]$ with respect to a given weight function w. After describing the construction process, we will use the principle

\(^4\) Solow 354
of mathematical induction to show that the set of polynomials generated are indeed orthogonal. After that we will apply certain conditions to the process to generate a set of orthogonal polynomials known as the Legendre polynomials.

See Section (5)

IV. Applications of Legendre Polynomials

Legendre polynomials are used in Gaussian quadrature, or more specifically, the roots of Legendre polynomials are used as nodes in Gaussian quadrature. To explain, methods of quadrature are aimed at finding more efficient and accurate ways to approximate integrals. For instance, any calculus student is familiar with some of the more basic quadrature methods, such as the mid-point method, Simpson’s rule, and Trapezoidal rule. All of these yield approximations to \(\int f(x) \) over a given interval \([a,b]\).

These methods become a bit more complicated when the idea of adaptive quadrature is introduced. An efficient technique of adaptive quadrature can distinguish the amount of functional variance and adapt the step size to the varying requirements of a problem. For instance, the nodes get closer together as the function variance starts getting more extreme. As such a method, Gaussian quadrature chooses the points for evaluation in an optimal, rather than equally spaced, manner. More specifically, the nodes \(x_1, x_2, \ldots, x_n \) that are needed to produce an integral approximation formula to give exact results for any polynomial of degree less than \(2n \) on the interval \((-1,1)\), are in fact the roots of the \(n \)-th degree Legendre polynomial.\(^5\)

Beckmann shows that the Legendre polynomials have an important use in differential equations as well. It turns out that as a direct result from the weight and

\(^5\) Burden 207
boundary conditions of the Legendre polynomials, they are the solution to the differential equation:
\[(1 - x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + n(n + 1)y = 0.\]

The Legendre polynomials are primarily met in the solution of partial differential equations in spherical coordinates.\(^7\) They are also encountered in probability theory, where they are associated with the uniform distribution.

While the uses for the Legendre polynomials are well documented, it is important to realize that there are many other families of orthogonal polynomials, each with their own important uses. For instance, the Chebyshev polynomials are used to generate an algorithm for the efficient calculation of hypergeometric probabilities.\(^8\) Jacobi polynomials are used to evaluate the weights belonging to a class of quadrature rules.\(^9\) And in general, various families of orthogonal polynomials can be used for the analysis of a trend.\(^10\)

The importance of orthogonal polynomials is not merely a thing of the past either. The Rayleigh-Ritz method, first proposed in 1985, uses boundary characteristic orthogonal polynomials to more efficiently analyze the vibration of certain structures. More than one hundred papers that used this method have been reported and discussed over the past twelve years.\(^11\)

\(^6\) Beckmann 46
\(^7\) Beckmann 75
\(^8\) Alvo 1
\(^9\) Smith 128
\(^10\) Berry 139
\(^11\) Chakraverty 1
In conclusion, the field of orthogonal polynomials does not appear to be that comprehensive at first. However, the areas of application are so widespread in subject matter and difficulty that one could devote a lifetime to studying them.
Let \(P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 \)

\[= \sum_{k=0}^{n} a_k x^k \]

We want to find coefficients \(a_0, a_1, \ldots, a_n \)

that will minimize \(E = \int_a^b \left(f(x) - \sum_{k=0}^{n} a_k x^k \right)^2 \, dx \).

Picture:

![Graph showing a function and a polynomial]

This area is \(E \)

We can view \(E \) as a function of \(a_0, a_1, \ldots, a_n \)

where to minimize \(E \), we need

\[\frac{\partial E}{\partial a_0} = \frac{\partial E}{\partial a_1} = \cdots = \frac{\partial E}{\partial a_n} = 0. \]

\[E = \int_a^b \left(f(x)^2 - 2 f(x) \sum_{k=0}^{n} a_k x^k + \left(\sum_{k=0}^{n} a_k x^k \right)^2 \right) \, dx \]

\[= \int_a^b \left(f(x)^2 - 2 \sum_{k=0}^{n} a_k \int_a^b x^k \, dx + \int_a^b \left(\sum_{k=0}^{n} a_k x^k \right)^2 \, dx \right) \, dx \]

So for each \(j = 0, 1, \ldots, n \)

\[\frac{\partial E}{\partial a_j} = -2 \int_a^b f(x) x^j \, dx + 2 \sum_{k=0}^{n} a_k \int_a^b x^{j+k} \, dx \]
To find $P_n(x)$, the $(n+1)$ linear normal

equations $\sum_{k=0}^{n} a_k \int_a^b x^k \, dx = \int_a^b f(x) \cdot x^j \, dx$, $j = 0, 1, \ldots, n$

must be solved for each of the $(n+1)$ unknowns a_j. (END SECTION 1.7)

2. Def 1: The set of functions $\{\phi_0, \phi_1, \ldots, \phi_n\}$
is linearly independent on $[a,b]$ if whenever

$\sum_{i=0}^{n} c_i \phi_i(x) = 0$ for all $x \in [a,b],

\quad c_0 = c_1 = \cdots = c_n = 0$.

Thm 1: Suppose for each $j = 0, 1, \ldots, n$, ϕ_j is a polynomial of degree j. Then $\{\phi_0, \phi_1, \ldots, \phi_n\}$
is linearly independent on any interval $[a,b]$.

Proof: Suppose c_0, c_1, \ldots, c_n are real numbers

for which $P(x) = c_0 \phi_0(x) + c_1 \phi_1(x) + \cdots + c_n \phi_n(x) = 0

for all $x \in [a,b]$. Since $P(x) = 0$ on $[a,b]$,

the coefficient of x^n is zero. (because
showing that the set $\mathcal{E}_{0}, \phi_{1}, \ldots, \phi_{n}$ spans T_{n}. Since the set is linearly independent, and since T_{n} has dimension $n+1$, $\mathcal{E}_{0}, \phi_{1}, \ldots, \phi_{n}$ forms a basis for T_{n}. Thus, by the definition of basis, any polynomial in T_{n} can be written as a linear combination of $\phi_{0}, \phi_{1}, \ldots, \phi_{n}$. (END SECTION 5.2)
Def 3: An integrable function \(w \) is called a **weight function** on the interval \(I \) if for all \(x \in I \), \(w(x) > 0 \), and \(w(x) \) cannot be the zero function on any subinterval of \(I \), (including \(I \) itself). \(^1\)

Def 4: \(\phi_0, \phi_1, \ldots, \phi_n \) is an **orthogonal** set of functions on \([a, b]\) with respect to the weight function \(w \) if:

\[
\int_a^b w(x) \phi_j(x) \phi_k(x) \, dx = \begin{cases}
0 & \text{whenever } j \neq k \\
\alpha_k > 0 & \text{whenever } j = k
\end{cases}
\]

Also, if \(\alpha_k = 1 \) for each \(k = 0, 1, \ldots, n \), the set is **orthonormal**. \(^2\) (END SECTION [37])
4] Thm 6: If f is an integrable, odd function defined on the interval $[-a,a]$ for some $a > 0$, then $\int_{-a}^{a} f(x) \, dx = 0$.

Proof:
\[
\int_{-a}^{a} f(x) \, dx = \int_{-a}^{0} f(x) \, dx + \int_{0}^{a} f(x) \, dx
\]
\[= \int_{-a}^{0} (-f(x)) \, dx + \int_{0}^{a} f(x) \, dx \]
\[= -\int_{0}^{a} f(-x) \, dx + \int_{0}^{a} f(x) \, dx \]
\[= -\int_{0}^{a} f(-x) \, dx + \int_{0}^{a} f(x) \, dx \]
\[= \int_{0}^{a} f(x) \, dx + \int_{0}^{a} f(x) \, dx \]
\[= 2 \int_{0}^{a} f(x) \, dx. \quad \square
\]

Thm 7: If f is an integrable, even function defined on the interval $[-a,a]$ for some $a > 0$, then $\int_{-a}^{a} f(x) \, dx = 2 \int_{0}^{a} f(x) \, dx$.

Proof:
\[
\int_{-a}^{a} f(x) \, dx = \int_{-a}^{0} f(x) \, dx + \int_{0}^{a} f(x) \, dx
\]
\[= -\int_{0}^{a} f(-x) \, dx + \int_{0}^{a} f(x) \, dx \]
\[= \int_{0}^{a} f(x) \, dx + \int_{0}^{a} f(x) \, dx \]
\[= 2 \int_{0}^{a} f(x) \, dx. \quad \square \]
Thm 8: The set of polynomials defined in the following way is orthogonal on \([a, b]\) with respect to the weight function \(w\).

\[\varphi_0(x) = 1, \quad \varphi_1(x) = x - \beta_1 \quad \text{for each } x \text{ in } [a, b] \]

where

\[B_1 = \frac{\int_a^b x \cdot w(x) [\varphi_0(x)]^2 \, dx}{\int_a^b w(x) \cdot [\varphi_0(x)]^2 \, dx}. \]

and when \(k \geq 2 \),

\[\varphi_k(x) = (x - \beta_k) \varphi_{k-1}(x) - c_k \varphi_{k-2}(x) \]

for each \(x \) in \([a, b]\) where

\[B_k = \frac{\int_a^b x \cdot w(x) [\varphi_k(x)]^2 \, dx}{\int_a^b w(x) \cdot [\varphi_{k-1}(x)]^2 \, dx} \quad \text{and} \quad c_k = \frac{\int_a^b w(x) \varphi_{k-1}(x) \varphi_{k-2}(x) \, dx}{\int_a^b w(x) \cdot [\varphi_{k-2}(x)]^2 \, dx}. \]

Proof: First, we will show that \(\{\varphi_0, \varphi_1\} \) is orthogonal on \([a, b]\) with respect to \(w\).

Based on the definition of orthogonality, we need to show three things:

1. \(\int_a^b w(x) [\varphi_0(x)]^2 \, dx = \alpha_0 \) for some \(\alpha_0 > 0 \).
(2) \(\int_a^b w(x) \phi_1(x)^2 \, dx = \alpha_1 \), for some \(\alpha_1 > 0 \).

(3) \(\int_a^b w(x) \phi_0(x) \phi(x) \, dx = 0 \)

For (1) it follows from the definition of weight function that \(\int_a^b w(x) [\phi(x)]^2 \, dx = \int_a^b w(x) \, dx > 0 \).

For (2) we must recognize that
\[
\phi_1(x) = x - \frac{\int_a^b x \cdot w(x) \, dx}{\int_a^b w(x) \, dx}
\]
and thus \(\phi_1(x) \) is a linear function.

We have that \(\forall x \in [a, b] \ (w(x) \geq 0) \). Also we have that \(\forall x \in [a, b] \ (\phi(x)^2 \geq 0) \). Thus \(\forall x \in [a, b] \ (w(x) \cdot \phi_0(x)^2 \geq 0) \). Clearly, \(\int_a^b w(x) [\phi_0(x)]^2 \geq 0 \).

Now, there exists some subinterval \((a_i, b_i) \subset [a, b]\) where \(w(x) > 0 \) for all \(x \in (a_i, b_i) \).

And on \([a, b] \), \([\phi_1(x)]^2 \) can have a maximum of one zero (because it has degree 2 and never crosses the x-axis). So if \([\phi_1(x)]^2 \) has no zeroes
on \((a_1, b_1)\), then \(\int_a^b w(x)[\Phi(x)]^2 \, dx > 0\) \(\implies\)
\(\int_a^b w(x)[\phi(x)]^2 \, dx > 0\). If it has one zero on \((a_1, b_1)\) let us call it \(\xi\). Then \(\int_a^\xi w(x)[\Phi(x)]^2 \, dx > 0\)
\(\implies\) \(\int_a^b w(x)[\phi(x)]^2 \, dx > 0\).

(3) is fairly straightforward:

\[
\int_a^b w(x) \phi(x) \Phi(x) \, dx = \int_a^b w(x) \left[x - \frac{1}{2} \frac{\partial}{\partial x} \frac{w(x)}{\Phi(x)} \right] \, dx
\]

\[
= \int_a^b \left[w(x) x - w(x) \frac{\int_a^b x w(x) \, dx}{\int_a^b w(x) \, dx} \right] \, dx
\]

\[
= \int_a^b w(x) x \, dx - \int_a^b \left[\frac{w(x)}{\Phi(x)} \int_a^b x \, w(x) \, dx \right] \, dx
\]

\[
= \int_a^b w(x) x \, dx - \int_a^b w(x) x \, dx \cdot \frac{\int_a^b w(x) \, dx}{\int_a^b w(x) \, dx}
\]

\[
= \int_a^b w(x) x \, dx - \int_a^b w(x) x \, dx
\]

\[
= 0.
\]

Now continuing with the process of induction, we need to show that if
$\exists \phi_0, \phi_1, \ldots, \phi_n$ is a set of orthogonal polynomials constructed in this manner, then $\exists \phi_0, \phi_1, \ldots, \phi_{n+1}$ is as well.

Suppose $\exists \phi_0, \phi_1, \ldots, \phi_n$ is a set of orthogonal polynomials on $[a, b]$. We need to show that for each $k = 0, 1, \ldots, n$,
\[
\int_a^b w(x) \phi_k(x) \phi_{n+1}(x) \, dx = 0.
\]

Now, since the recursion formula tells us that $\phi_{n+1}(x) = (x - b_{n+1}) \phi_n(x) - c_{n+1} \phi_{n-1}(x)$, we can sub this value into the integral and expand to get:
\[
\int_a^b w(x) \phi_k(x) \phi_{n+1}(x) \, dx = \int_a^b w(x) \phi_k(x) (x - b_{n+1}) \phi_n(x) \, dx - c_{n+1} \int_a^b w(x) \phi_k(x) \phi_{n-1}(x) \, dx.
\]

Now, think of this equation in the form $X - Y - Z$ as shown above.

Let's look at $X = \int_a^b w(x) \cdot x \cdot \phi_k(x) \cdot \phi_n(x) \, dx$ for each $k = 0, 1, \ldots, n$. We will show in
the upcoming corollary that \(X = 0 \) when

\[k = 0, 1, \ldots, n-2. \]

For now, we will make this claim. Now \(Y = B_{n+1} \int_a^b w(x) \phi_k(x) \phi_n(x) \, dx \) for each \(k = 0, 1, \ldots, n \). Therefore, \(Y = \frac{\int_a^b x \cdot w(x) \left[\phi_n(x) \right]^2 \, dx}{\int_a^b w(x) \, dx} \cdot \int_a^b w(x) \phi_k(x) \phi_n(x) \, dx \)

\[= 0 \] when \(k = 0, 1, \ldots, n-1 \) and

\[= \int_a^b x \cdot w(x) \left[\phi_n(x) \right]^2 \, dx \] when \(k = n \).

\[Z = c_{n+1} \int_a^b w(x) \phi_k(x) \phi_{n-1}(x) \, dx \] for each \(k = 0, 1, \ldots, n \).

\[= \int_a^b x \cdot w(x) \phi_k(x) \phi_{n-1}(x) \, dx \cdot \frac{\int_a^b w(x) \phi_k(x) \phi_{n-1}(x) \, dx}{\int_a^b w(x) \, dx} \]

\[= 0 \] when \(k = 0, 1, \ldots, n-2 \), and

\[= \int_a^b x \cdot w(x) \phi_k(x) \phi_{n-1}(x) \, dx \] when \(k = n-1 \), and

\[= 0 \] when \(k = n \).

Now, returning our attention to the Form \(X - Y - Z \), we get that whenever
When
\[k = 0, 1, \ldots, n-2, \quad X - Y - Z = 0. \]
And when
\[k = n-1, \quad X - Y - Z = \int_a^b w(x) \cdot \phi_{n-1}(x) \phi_n(x) \, dx - \int_a^b x \cdot w(x) \cdot \phi_{n-1}(x) \phi_n(x) \, dx = 0. \]
And when \(k = n, \)
\[X - Y - Z = \int_a^b w(x) \cdot [\phi_n(x)]^2 \, dx - \int_a^b x \cdot w(x) \cdot [\phi_n(x)]^2 \, dx = 0. \]

So for each \(k = 0, 1, \ldots, n, \)
\[\int_a^b w(x) \cdot \phi_k(x) \phi_{k+1}(x) \, dx = 0. \]

Now finally we must show that
\[\int_a^b w(x) [\phi_{n+1}(x)]^2 \, dx \neq 0 \]
for some \(\phi_{n+1} > 0. \)

Clearly, the product \(w(x) [\phi_{n+1}(x)]^2 \geq 0 \)
for all \(x \in [a, b]. \)

Now, there exists some subinterval \((a_i, b_i) \subset [a, b] \)
where \(w(x) > 0 \) for all \(x \in (a_i, b_i). \)
And since \([\phi_{n+1}(x)]^2 \) is a polynomial of degree
\[2(n+1), \] and never crosses the \(x \)-axis,
it has a maximum of \(n+1 \) zeroes
on \([a, b]. \) Suppose it has no zeroes on
\((a_i, b_i). \) Then \(\int_{a_i}^{b_i} w(x) [\phi_{n+1}(x)]^2 \, dx > 0. \)
which implies \[\int_a^b w(x)[\phi_m(x)]^2 \, dx > 0. \] Suppose it has at least one zero on \((a, b)\).

Let's call the smallest one \(x_0\). Then
\[\int_a^b w(x)[\phi_m(x)]^2 \, dx > 0 \implies \int_a^b w(x)[\phi_{m+1}(x)]^2 \, dx > 0. \]

\[\phi_0, \phi_1, \ldots, \phi_m \] is a set of orthogonal polynomials whenever \(\phi_0, \phi_1, \ldots, \phi_n \) is.

By PMI, the set \(\phi_0, \phi_1, \ldots, \phi_n \) generated by the method described in Thm 8, is a set of orthogonal polynomials.
Corollary 8.1

\[\int_a^b w(x) \cdot \phi_k(x) \cdot \phi_n(x) \, dx = 0 \quad \text{when} \quad k = 0, 1, \ldots, n-2 \]

Proof: Let \(k = 0, \ldots, n-2 \). By Thm 7, \(\phi_0, \phi_1, \ldots, \phi_{k+3} \) is linearly independent on \([a, b]\). Thus \(\{\phi_0, \phi_1, \ldots, \phi_{k+3}\} \) forms a basis for \(P_{k+1} \). Thus every polynomial of degree \(k+1 \) can be written as a linear combination of \(\phi_0, \phi_1, \ldots, \phi_{k+1} \).

Thus, for some constants \(c_0, c_1, \ldots, c_{k+1} \),

\[x \cdot \phi_k(x) = \sum_{i=0}^{k+1} c_i \phi_i(x) \].

Thus \(\int_a^b w(x) \cdot \phi_k(x) \cdot \phi_n(x) \, dx \)

\[= \sum_{i=0}^{k+1} c_i \int_a^b w(x) \cdot \phi_i(x) \cdot \phi_n(x) \, dx \]

\[= \sum_{i=0}^{k+1} c_i \int_a^b w(x) \cdot \phi_i(x) \, dx + \ldots + c_{k+1} \int_a^b w(x) \cdot \phi_{k+1}(x) \, dx \]

\[= c_0 \int_a^b w(x) \cdot \phi_0(x) \, dx + \ldots + c_{k+1} \int_a^b w(x) \cdot \phi_{k+1}(x) \, dx \]

\[= c_0 \cdot 0 + c_1 \cdot 0 + \ldots + c_{k+1} \cdot 0 \]

\[= 0 \quad \text{From this argument, we see that} \]

\[\int_a^b w(x) \cdot \phi_k(x) \cdot p_k(x) \, dx = 0 \quad \text{where} \]

\(p_k \) is any polynomial in \(P_{k+1} \).
The set of Legendre polynomials, \(P_n \), is orthogonal on \([-1, 1]\) with respect to the weight function \(w(x) = 1 \). The classical definition of the Legendre polynomials requires that \(P_n(1) = 1 \) for each \(n \in \mathbb{N} \). By using Thm 8, and disregarding the boundary condition, we will generate a constant multiple of the Legendre polynomials. For application purposes though, this difference is just a matter of convention. (Later, we will look at the exact Legendre polynomials and the recursive relation used to generate them.) According to Thm 8, \(P_0(x) = 1 \) on \([-1, 1]\).

\[
P_1(x) = x - P_0(x) = x - \frac{1}{\frac{1}{1} \int_1 1 \, dx} = x - 0 = x.
\]
\[P_2(x) = (x - B_2) \cdot P_1(x) - C_2 P_0(x) \]
\[= (x - \frac{\int_1^3 x^2 \, dx}{\int_1^3 x^2 \, dx}) \cdot x - \frac{\int_1^3 x^2 \, dx}{\int_1^3 1 \, dx} - x^2 + \frac{1}{3} \]

Continuing in this fashion we find that
\[P_3(x) = x^3 - \frac{3}{5} x, \quad P_4(x) = x^4 - \frac{6x^2 + \frac{3}{35}}{7} \]

and \[P_5(x) = x^5 - \frac{10x^3 + 5x}{9} \] to name a few.

Below is a rough sketch of \(P_0(x) \) through \(P_4(x) \).
Thm. 9: (Refinement of Thm. 8 for a special case).

The set of polynomials $\phi_0, \phi_1, \ldots, \phi_n$ defined in the following way is orthogonal on $[-a,a]$ (where $a>0$) with respect to the weight function $w(x) = 1$:

$\phi_0(x) = 1$, $\phi_1(x) = x$ for each $x \in [-a,a]$

and when $k \geq 2$,

$\phi_k(x) = x \cdot \phi_{k-1}(x) - C_k \phi_{k-2}(x)$ for each $x \in [-a,a]$

where $C_k = \frac{\int_{-a}^{a} x \cdot \phi_{k-1}(x) \cdot \phi_{k-2}(x) \, dx}{\int_{-a}^{a} [\phi_{k-2}(x)]^2 \, dx}$.

Proof. Applying the interval and weight function to the process described in Thm. 8, we get that $B_1 = \int_{-a}^{a} x \cdot dx = 0 = 0$.

Thus, $\phi_0(x) \equiv 1$ and $\phi_1(x) = x$ for each $x \in [-a,a]$.
Also, when \(k = 2 \), we have

\[
B_k = \frac{\int_0^a x \cdot [\phi_{k-1}(x)]^2 \, dx}{\int_0^a [\phi_{k-1}(x)]^2 \, dx}
\]

But \(x \cdot [\phi_k(x)]^2 \) is odd (by Thm 5) and \(\int_0^a x \cdot [\phi_{k-1}(x)]^2 \, dx = 0 \) (by Thm 6).

Thus \(B_k = 0 \) for all \(k \geq 2 \).

Also, when \(k \geq 2 \),

\[
C_k = \frac{\int_0^a x \cdot \phi_k(x) \cdot \phi_{k-2}(x) \, dx}{\int_0^a [\phi_{k-2}(x)]^2 \, dx} = \frac{2 \int_0^a x \cdot \phi_k(x) \cdot \phi_{k-2}(x) \, dx}{2 \int_0^a [\phi_{k-2}(x)]^2 \, dx}
\]

This method saves us some work when dealing with approximations on symmetric intervals.
Hildenbrand outlines the origin of the classical definition of Legendre polynomials.

Starting with the same least squares approximation problem, he searches for a polynomial, \(\Phi_r(x) \) (of degree \(r \)), such that

\[
\int_{-1}^{1} w(x) \Phi_r(x) \Phi_{r+1}(x) \, dx = 0 \quad \text{where } \Phi_{r+1} \text{ is an arbitrary polynomial in } \Pi_r. \quad \text{After integrating by parts } r \text{ times, and deriving a differential equation related to } \Phi_r(x),
\]

he applies the Legendre conditions (namely the ones we discussed before) to the set of \(\Phi_r(x) \)'s. From the differential equation conditions, it is found that the \(r \)-th Legendre polynomial is given by

\[
P_r(x) = \frac{1}{2^r r!} \frac{d^r}{dx^r} (x^2 - 1)^r.
\]
The constant term \(\frac{1}{2^{1/2}} \) is chosen to fit the condition that \(P_n(1) = 1 \) for each \(n \in \mathbb{N} \).

Using this method to generate the Legendre polynomials, we get

\[
P_0(x) = 1, \quad P_1(x) = x, \quad P_2(x) = \frac{3}{2}x^2 - \frac{1}{2}, \quad P_3(x) = \frac{5}{2}x^3 - \frac{3}{2}x, \quad \text{and}
\]

\[
P_4(x) = \frac{35}{8}x^4 - \frac{15}{4}x^2 + \frac{3}{8}.
\]

As the first five Legendre polynomials. Here is a rough sketch of \(P_0 \) to \(P_4 \) on the interval \([-1, 1]\).
Additional $P_n(x)$'s can be determined from the recurrence formula:

$$P_{n+1}(x) = \frac{2n+1}{n+1} P_n(x) - \frac{n}{n+1} P_{n-1}(x).$$

While the $P_n(x)$'s that we derived from Theorem 8 give very good least square approximations, Hildebrand concludes that the best possible value of $P_n(x)$ for a given net (to minimize E back in Section [17] over $(-1,1)$) is a linear combination of the Legendre polynomials in the form

$$a_0 P_0(x) + a_1 P_1(x) + \ldots + a_n P_n(x),$$

where each $a_r = \frac{2r+1}{2} \int_{-1}^{1} P_r(x) \, dx.$

(End Section [15])
Sources

Related Readings

SOUTHERN SCHOLARS SENIOR PROJECT

Name: Francis Radnoti Date: 1-18-02 Major: Mathematics

SENIOR PROJECT

A significant scholarly project, involving research, writing, or special performance, appropriate to the major in question, is ordinarily completed the senior year. The project is expected to be of sufficiently high quality to warrant a grade of A and to justify public presentation.

Under the guidance of a faculty advisor, the Senior Project should be an original work, should use primary sources when applicable, should have a table of contents and works cited page, should give convincing evidence to support a strong thesis, and should use the methods and writing style appropriate to the discipline.

The completed project, to be turned in in duplicate, must be approved by the Honors Committee in consultation with the student's supervising professor three weeks prior to graduation. Please include the advisor's name on the title page. The 2-3 hours of credit for this project is done as directed study or in a research class.

Keeping in mind the above senior project description, please describe in as much detail as you can the project you will undertake. You may attach a separate sheet if you wish:

Investigate the application of orthogonal polynomials.

Dr. Richard's project advisor

Signature of faculty advisor

Expected date of completion 4/15/02

Approval to be signed by faculty advisor when completed:

This project has been completed as planned: Yes

This in an "A" project: Yes

This project is worth 2-3 hours of credit: Yes

Advisor's Final Signature

Dear Advisor, please write your final evaluation on the project on the reverse side of this page. Comment on the characteristics that make this "A" quality work.