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I. Introduction:

The purpose of this paper is to first and foremost explain the concept of
orthogonal polynomials to the student who has no significant background in numerical
analysis or theoretical physics. Commencing with the common problem of finding a
polynomial approximation to a given function on a closed interval, I will endeavor to
show a construction of concepts and theorems from calculus, linear algebra, and real
analysis which develops the importance of orthogonal polynomials. After proving a
popular method for constructing a family of orthogonal polynomials, we will then use the
method to derive one of the most basic families, the Legendre polynomials. We will then
take a look at the first few Legendre polynomials and examine recurrence relations for
generating new ones.

This family has many interesting applications in different fields of mathematics
and physics. The most common of these is the role they play in the least square
approximation problem on the interval (-1,1). In fact, the set of Legendre polynomials up
to degree n ultimately provides the best least square approximation to a function f(x) on
L0t

The influence of Legendre polynomials also extends to Gaussian quadrature
nodes, differential equations, and spherical harmonics, among other topics. And when
expanding our outlook to all families of orthogonal polynomials, the topics are almost
endless. Consequently, the field of orthogonal polynomials is useful in a variety of ways,

and quite valuable to mathematicians, statisticians, and physicists alike.
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II. Least Squares Approximation Problem and Linear Independence

When we speak of least squares approximation, we want to find, for a given a
function fin C[a,b], a polynomial of degree at most n that will minimize the expression
J [f(x) = Py(x)]* dx across the interval [a,b].

See Section (1)

As you can see, for each Py, this method requires us to solve an (n+1) by (n+1)
matrix. Unfortunately, solving this matrix for P, does not lessen the amount of work
needed to solve for P,,;.> We will now look at the orthogonal polynomials approach to
this problem. First we will need a few definitions and theorems regarding linear
independence.

See Section (2)

III. Orthogonal Sets of Functions

Here, we will look at some definitions and theorems that show the properties of
orthogonal polynomials. The first definition is that of a weight function, which is very
important as it is one of the main characteristics that distinguishes between families of
orthogonal polynomials. For instance, the Legendre polynomials that we will be dealing
with have the simple weight function w(x) =1 on [-1, 1]. However, the Jacobi,
Chebyshev, and Gegenbauer polynomials have more complicated weight functions,
usually in the form of (1 — xz)k for some predetermined k. The Hermite and Laguerre

polynomials have exponential weight functions.’

See Section (3)
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Before we move on to the construction of orthogonal sets of functions, we need to

show some basic properties of even and odd functions that will simplify our work later.

Ihm 3: If fand g are even functions, then fg is even.
Proof: Suppose fand g are even functions.

Then fg(-x) = -x)g(-x) = fix)g(x) = fg(x). Thus fg is even.

Thm 4: If fand g are odd functions, then fg is even.
Proof: Suppose fand g are odd functions.

Then fg(-x) = A-x)g(-x) = (-fAx))(-g(x)) = fg(x). Thus fg is even.

Thm &: If fis an odd function and g is an even function, then fg is odd.

Proof: Suppose fis odd and g is even.

Then fg(-x) = A-x)g(-x) = (:/Ax))g(x) = -Ax)g(x) = fg(x). Thus fg is odd.

Also, for future reference, we need to discuss the outcome of even and odd
integrals over symmetric intervals. Since the Legendre polynomials are defined on the
symmetric interval [-1,1], it is evident that this will come in handy later.

See Section (4)

Now, the following theorem, based on the Gram-Schmidt process4, describes how

to construct orthogonal polynomials on a closed interval [a, b] with respect to a given

weight function w. After describing the construction process, we will use the principle
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of mathematical induction to show that the set of polynomials generated are indeed
orthogonal. After that we will apply certain conditions to the process to generate a set of
orthogonal polynomials known as the Legendre polynomials.

See Section (5)

IV. Applications of Legendre Polynomials

Legendre polynomials are used in Gaussian quadrature, or more specifically, the
roots of Legendre polynomials are used as nodes in Gaussian quadrature. To explain,
methods of quadrature are aimed at finding more efficient and accurate ways to
approximate integrals. For instance, any calculus student is familiar with some of the
more basic quadrature methods, such as the mid-point method, Simpson’s rule, and
Trapezoidal rule. All of these yield approximations to Jf(x) over a given interval [a,b].

These methods become a bit more complicated when the idea of adaptive
quadrature is introduced. An efficient technique of adaptive quadrature can distinguish
the amount of functional variance and adapt the step size to the varying requirements of a
problem. For instance, the nodes get closer together as the function variance starts
getting more extreme. As such a method, Gaussian quadrature chooses the points for
evaluation in an optimal, rather than equally spaced, manner. More specifically, the
nodes X1, X2, ... Xn that are needed to produce an integral approximation formula to give
exact results for any polynomial of degree less than 2n on the interval (-1,1), are in fact
the roots of the nth-degree Legendre polynomial.’

Beckmann shows that the Legendre polynomials have an important use in

differential equations as well. It turns out that as a direct result from the weight and
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boundary conditions of the Legendre polynomials, they are the solution to the differential
equation: (1 — x?)dy/dx’ — 2xdy/dx + n(n + 1)y = 0.5

The Legendre polynomials are primarily met in the solution of partial differential
equations in spherical coordinates.” They are also encountered in probability theory,
where they are associated with the uniform distribution.

While the uses for the Legendre polynomials are well documented, it is important
to realize that there are many other families of orthogonal polynomials, each with their
own important uses. For instance, the Chebyshev polynomials are used to generate an
algorithm for the efficient calculation of hypergeometric probabilities.® Jacobi
polynomials are used to evaluate the weights belonging to a class of quadrature rules.’
And in general, various families of orthogonal polynomials can be used for the analysis
of a trend.”®

The importance of orthogonal polynomials is not merely a thing of the past either.
The Rayleigh-Ritz method, first proposed in 1985, uses boundary characteristic
orthogonal polynomials to more efficiently analyze the vibration of certain structures.
More than one hundred papers that used this method have been reported and discussed

over the past twelve years.11

¢ Beckmann 46
" Beckmann 75
& Alvo 1

® Smith 128

' Berry 139

" Chakraverty 1



In conclusion, the field of orthogonal polynomials does not appear to be that
comprehensive at first. However, the areas of application are so widespread in subject

matter and difficulty that one could devote a lifetime to studying them.
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