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Abstract 

Closed shell bonding can be described by a theory that relates the manner that 

atoms fill their outer shells to algebraic formulas. Equations can be derived that are 

capable of deciding whether a given electron configuration gives a closed shell electron 

structure or not. A combinatorial analysis can be used to try every possible electron 

configuration for a given structure. The equations are then used to determine whether 

each structure gives a closed shell electron configuration. Some of these molecules may 

be considered impossible because they are bonded to noble gases. However, a list of 

molecules that contain a noble gas species is included to show that bonding to noble 

gases is not impossible. An initial list of triatomic linear molecules is presented. 

Introduction 

G. N. Lewis was one of the first to note that the electron configurations of the 

noble gases are very stable and unreactive. He went on to suggest that atoms could attain 

similar electronic structures as the noble gases by sharing their electrons. In 1916, he 

coined the term covalent bond to describe this phenomenon. This model quickly became 

known as the Lewis model and is one of the most well known models for describing 

molecular bonding. 1 

The Lewis model for covalent bonding is only concerned with electrons in the 

outermost principal energy level. These electrons are commonly referred to as valence 

electrons. Valence electrons can be easily represented as dots around a chemical symbol. 

For example, the following is a representation of a Beryllium atom. 

·Be· 

1 



The atom has only two valence electrons and these are represented by the two dots. These 

symbols can be joined together to create covalent bonds by combining the structures in 

such a way so that the same electron configuration as a noble gas is attained around each 

atom. When all the atoms in a molecule have closed outer electron shells, the energy of 

the system is minimized. Because all noble gases except helium have eight electrons in 

the outermost shell, the this configuration is now called the rule of eight. 

The basic ideas used in determining Lewis structures can easily be translated into 

an algebraic form. For any molecule that follows the rule of eight and has atoms with no 

formal charge, the number of electrons held by one atom, plus the electrons it receives 

from another atom must equal eight.3 In other words, an equation is written that requires 

each atom to have the number of electrons requisite for a closed shell. 

For example, in a two-atom molecule the following equation can be written for 

the first atom, c1 + v 12 = 8, where c1 refers to the number of electrons in atom 1 and v 12 

refers to the number of atoms that c1 receives from c2. 2 A similar equation can be written 

for the other atom in the molecule. The equations can then be combined algebraically to 

make one large equation that when satisfied will give a molecule that contains only 

closed shell atoms as long as a few simply constraints are met. Two atom molecules will 

again be used as an example. Assuming that V12 is equal to v21, the following equations 

can be derived. The first one is derived by using addition of equations and the second by 

subtractions. Equations can be combined in any manner of addition or subtraction and 

this will not affect the validity of the equation. 

+ 

C1+V12=8 

C2+V21=8 

2 

C1+V12=8 

C2+V21=8 



Note how the two solutions both have benefits and drawbacks. The first equation, arrived 

at through the addition method includes a term for the bonding. This is good if one wants 

to know the order of the bonds; however, it is an extra variable that can add considerable 

time to calculations. On the other hand, the subtraction method is valuable because it can 

predict the specific atoms in the molecule with the fewest variables possible. Simply 

satisfy that equation and a few simple constraints and a closed shell molecule will be 

produced. When used together the different techniques can be very powerful. The 

subtraction method can first be used to determine the atoms in a molecule, and then the 

addition method can be used to find the bond order. Although the addition method alone 

would work as well, the use of both of them together can be much faster for large 

molecules. 

The use of these two methods is very good at finding a small subset of molecules. 

However, it fails to take into effect coordinate covalent bonding. In coordinate covalent 

bonding, one molecule donates both electrons from a lone pair to a shared bond. The 

most common example of this is carbon monoxide. Carbon is triple bonded to oxygen, 

however carbon donates both electrons to form the third bond, thus there are two 

electrons from oxygen and four from carbon making a triple bond. Although the 

constraints are still being discovered for coordinate covalent bonding, it can easily be 

incorporated into our equations. Coordinate covalent bonding can be taken into effect by 

adding a 2 in front of each of the variables that represents the atom that initiates the 

coordinate covalent bond. 
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Methodology 

Triatomic linear molecules were chosen to be studied because diatomic molecules 

had already been studied in detail.4 Another benefit of triatomic linear molecules is that 

they are easily represented and can be graphed according to each atom in the molecule. 

Once the number of molecules and geometric structure were determined, the 

equations for triatomic linear molecules had to be determined. The first step is to find the 

specific equation for each atom in the molecule. Because the first molecule has c1 valence 

electrons and receives V12 electrons from the second atom, its equation is c1 + v 12 = 8. 

The second atom is slightly more complex. It not only receives electrons from the third 

atom, it receives electrons from the first. So the equation for the second atom has an extra 

term, c2 + v 12 + v23 = 8. The third atom is in the same situation as the first, so its equation 

is c3 + v23 = 8. These equations can be combined using the addition method to make one 

large equation. 

c1 + v12 = 8 

c2 + V12 + V23= 8 

+ C3 + V23 = 8 

C1 + C2+ C3 + 2(V12) + 2 (V23) = 24 

Once the general equation has been found, combinatorial analysis can be used to 

find out which atoms are in the molecule, and what bond order is between them. So a 

computer program can simply plug in all possible values one at a time and check to see if 

the equation is true. As an example, the analysis finds that 7 + 6 + 7 + 2 * 1 + 2 * 1 = 24 

is a true statement. So we can say that a triatomic linear molecule that has an outer 
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electron configuration of 7, 6, 7, that is joined by two single bonds is a closed shell 

molecule. By substituting into the second of the periodic table, one can find the molecule 

F-0-F. 

There has been a constant evolution in the methods of combinatorial analysis used 

to determine these molecules. The first method used was a pen and paper. One can guess 

which possible atoms should be in a molecule, then enter the values in to the equations to 

determine if it is a valid molecule. The pen and paper method is slower, but it is the most 

accurate and is still used to check the newer methods. 

The second method employed was a spreadsheet. In the spreadsheet, each line had 

one possible configuration for a molecule. The spreadsheet then checked to see if the 

variables used in that line, when put into the equation gave a true statement. Using the 

addition method, this took around 1600 lines. This also did not take coordinate covalent 

bonding into effect. 

A third method was developed using a Java computer program to try all the 

possible values. This first program did not take coordinate covalent bonds into effect and 

was very rudimentary. It was also only able to find molecules for triatomic linear 

molecules. It had to be rewritten and recompiled to find any other configuration. 

However, it did find the majority of covalent molecules after some bugs were worked 

out. The computer code for this program has been included in appendix A. 

The program was then rewritten to be able to address some of the major problems 

associated with the first program. The biggest feature of this program is that no rewrite is 

necessary to change the geometric and atomic structures being used. The computer code 

used is included in appendix B. 
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Results 

The molecules found from the combinatorial analysis are listed in table 1. These 

molecules have both covalent and coordinate covalent bonding. The molecules were then 

graphed according to the number of valence electrons in each atom. Figure 1 shows the 

entire coordinate system used to graph the molecules. The first item of note from figure 1 

is that there are three main planes moving from the upper left to the lower right. Another 

item of note is that only atoms in the s and p levels have been included. If d atoms had 

been included the entire coordinate system would have been filled. Figure 2 is a closer 

view that is centered on the lowest plane in the figure. Figure 3 is very similar, however it 

is centered on the middle plane. Figure 4 gives a completely different view. This is a 

picture taken from above the origin looking down at the planes. Figure 5 is a cut away 

from the top plane in the figures 1-4. Figures 6 and 7 are both cut away from the middle 

and bottom planes respectively. Figure 8 shows molecules that have entropy data for 

them. The picture on the left is the standard picture. The boxes in the picture on the right 

are proportional to the entropy of each molecule. Since entropy is a measure of disorder, 

the smaller boxes should be molecules that are more stable, note C02. 

Discussion 

One supposed problem with our study is that many of the molecules predicted by 

our theories, especially using coordinate covalent bonding, are bonded to the noble gases. 

Anyone who has taken a high school chemistry class knows that noble gases rarely bond 

to other molecules. That is why they used to be called the inert gases. However, current 

research has shown many molecules that contain noble gases. According to the National 
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Institute of Standards and Technologies webBook database the elements below are all 

molecules with either spectral or thermodynamic data.4 

ArBrXe NeXeBr NeKrCl Ne2F NeXeF BeOXe BrNeXe 

C5CrO5Xe C5MoO5Xe ClFXe ClKrXe F2Xe HBrXe ArFXe 

Simply because many molecules appear extremely unstable in no way negates the value 

of this method. A closed shell molecule may not always be a stable molecule due to steric 

strain or other factors. 

The theory presented here is an attempt to reformulate Lewis-structure chemistry 

in a general and rigorous way.6 Nearly 20 million molecules have been characterized and 

the majority of them have a least partial Lewis structures. It seems that the methodology 

employed here should be useful for identifying new species as well as systematically 

finding any molecule needed, known or not. 6 

The most recent research is showing clear trends in stability, with the most stable 

molecules near the center of three isoelectronic planes. One way these stability Formal 

charge is a way of finding the apparent charge on any one atom in a molecule. One way 

of determining whether a Lewis structure's is valid is by minimizing formal charge. 

Figures 5, 6 and 7 show the three isoelectronic triangles from figures 1-4. These 

triangular graphs contain the sum of formal charge for the entire molecule. 

Another good indicator of stability is entropy. Because entropy is a measure of the 

disorder of a molecule, the smaller the entropy value, the more stable a molecule should 

be1. Figure 8 shows a graph of entropy with the molecules that contain stability data. The 

left hand side of the figure contains the molecules as they would normally appear. The 
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right hand side contains the same molecules, but the size of the boxes has been scaled to 

be proportional to entropy. 

This theory could some day allow pharmaceutical companies to find new drugs 

faster, by systematically finding all related molecules. Many different drugs have very 

similar atomic structures. One could use a program similar to the one in appendix B to 

input a known structure, while giving the program certain variables of what the parts of 

the molecule the researchers would like to vary. Hopefully some of the molecules 

generated would produce useful molecules not thought of initially. 

The ability to predict the majority of electronically stable molecules from a set of 

basic principles should be a huge asset to the scientific community. Although many 

molecules do appear to be short lived, the fact that they follow the rule of eight and fall 

into such regular patterns is astounding. Still, much more research is needed before more 

practical applications can be developed. 
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Table 1: This is a list of all linear triatomic molecules. The notation needs explantion. Normal bond 
notation is used for covalent bonds, but for coordinate covalent bonds direction must be noted. The 
arrows show which atoms donated two atoms for a bond. The symbol -= represents a covalent triple 
bond. 

Ne>O>>>Be F-F>>>Be O<Ne>>>Be Ne>N->>B F-0->>B 

O<F->>B Ne>>C>>C Ne>C=>C F->N>>C F-N=>C 

0=0>>C 0<0=>C Ne>O>>C N-<F>>C F-F>>C 

C<<Ne>>C O<Ne>>C Ne>>B->N Ne>B-=N F->C->N 

F-C-=N O=N->N O<N-=N Ne>N->N N-<0->N 

F-0->N C<<F->N O<F->N Ne>>>Be>O Ne>>Be=O 

Ne>Be=<O F->>B>O F->B=O F-B=<O O=>C>O 

O<C=<O O=C=O Ne>>C>O Ne>C=O N-=N>O 

N-<N=O F->N>O F-N=O C=<O>O C<<0=0 

0=0>0 0<0=0 Ne>O>O B-<<F>O N-<F>O 

F-F>O Be<<<Ne>O C<<Ne>O O<Ne>O Ne>>>Li-F 

Ne>>Li-<F Ne>Li-<<F F->>Be-F F->Be-<F F-Be-<<F 

O<B-<<F O=>B-F O=B-<F Ne>>B-F Ne>B-<F 

N-<C-<F N-=C-F F->C-F F-C-<F C<<N-<F 

C=<N-F O<N-<F O=N-F Ne>N-F B-<<0-F 

N-<0-F F-0-F Be<<<F-F C<<F-F O<F-F 

F->>Li<Ne F->Li<<Ne F-Li<<<Ne O<Be<<<Ne O=>Be<Ne 

O=Be<<Ne Ne>>Be<Ne Ne>Be<<Ne N-<B<<Ne N-=B<Ne 

F->B<Ne F-B<<Ne C<<C<<Ne C=<C<Ne O<C<<Ne 

O=C<Ne Ne>C<Ne B-<<N<Ne N-<N<Ne F-N<Ne 

Be<<<O<Ne C<<O<Ne O<O<Ne 
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Figure 1: Distant view showing coordinate system from a distance 

Figure 2: Closer view centered on lowest plane 
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Figure 3: A closer look at molecules centered on second plane 

Figure 4: View from above origen looking down along planes 
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FOF 

\\ 
cl=2 

\ 

Figure 5: Diagram of highest plane showing the location and formal charge of all molecules 

FCF 

ONF········· 

CFF FFC 

Figure 6: Diagram showing molecules in middle plane 
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BeFF 

NCF 

FBeF 

oco 

CNF 

coo 

CFN 

BeN 

NFC 

CNeC 

FCN 

FNC 

ooc 

FFBe 

Figure 7: Diagram showing molecules from the lowest plane in graph and showing the summation of 
the absolute value of the formal charge for each molecule 
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Figure 8: Standard Entropies at 25°C (J/mol K) of compounds at 1 atm. Two views of molecules 
with entropy data. The picture on the left shows the molecules as they appeared in the earlier graphs. 
In the picture on the right, the molecules have been edited for size according to their entropy data. 
The numbers above are the actual values 

Appendix 

A. First Java Computer Program 

import com . sun.j3d . utils.applet.MainFrame; 
import mvs.*; 
import java.util. 'lector; 
import java.awt.*; 
import ViewMol; 
import javax.media.j3d . *; 
public class Model3Ln extends Canvas
{ 

protected int state = 0; 
protected String lookup[] ''Li", "Be", "B", "C" , "N. , "O'' , ''F", 

"Fe", 

protected String lookup2[] = { "" , ''-" , "=", "-=" }; 
protected Data temp; 
public Vector answer= new Vector(20,20); 
protected int cl = 0, c2 = 0, c3 = 0, c4 = 0, cS 0; 

"Ne" , "Sc" , "Ti" . "V", "Cr" , "Mn" ,

"Co", "Ni'' , "CU'' , "Zn" } ; 

protected int a= 8, b = 8, c = 8, d = 8, e = 8; public void setState( int a ){ 
state = a; l 

public Model3Ln () 
{ 

this.setSize(400, 800); this . setBackground(Color . cyan); 
compute (); 
sort(); repaint(); 

public Model3Ln (int al, int bl, int cl) 
{ 

this.setSize(400, 800) ;
compute (); 

this.setBackground(Color.cyan); 

sort () ; repaint () ; 
} 
public void setData (int al, int bl , int cl) 
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a al; 
b bl; 
c cl; 
compute () ; 
sort (); 

public void compute () 
{ 

for (int i = a I 2; i < a; i++) 
{ 

for (int j = b 
{ 

2; j < b; j++) 

for (int k 
{ 

c I 2; k < c; k++) 

for (int vl2 
{ 

1; vl2 < 4; v12++) 

for (int 23 = 1; v23 < 4; v23++) 
{ 

if ( i + j + k == a + b + c - 4 - 2 * vl2 - 2 * v23 
&&v12 + v23 <= 4) 
{ 

cl a - v12; 
c2 b - 4 - v12 - v23 ; 
c3 c - v23; 
if (cl > 0 && c2 > 0 && c3 > 0) 

( 
temp = 
new Data (c1, c2, c3 , 0, 0 , v12 + 1, v 2 3 + 1, 0, 0, 

D) : 
answer.addElement (temp) ; 

publi c void sort () 
{ for( int m =0; m < answer . size(); m++) ( 

for ( int i = 0; i < answer.size () - 1; i++) 
{ 

for (int j = i + 1; j < answer.size (); j++) 
( 

if ( ((Data) answer . elementAt (i)) .value () 
((Data) answer.elementAt (j)) .value ( ) ) 

answer.remov eElementAt (j) ; 

public String[] getResults () 
{ 

String[] results= new String[answer.size () ] ; 
for (inti= 0; i < answer.size (); i++) 

{ 
results[i] 

lookup[((Data) answer.elementAt (i)) .ell + 
lookup2[((Data) answer.elementAt (ill . vl2] + 
lookup[((Data) answer . elementAt (i)) . c2] + 
lookup2[((Data) answer.elementAt (ill .v23] + 
lookup[((Data) answer.elementAt (ill . c3]; 

return results; 
public void paint( Graphics g) ( int xpos 30, ypos 

/,paint generic shape 
g.drawString("c1", xpos, ypos) ; 
g.drawString("c2", xpos +line, ypos +sine); 
g . drawString("c3", xpos +2*linc, ypos); 
g.drawLine( xpos + 10, ypos, xpos+lihc-2, ypos+S); 
g.drawLine( xpos +linc+12, ypos+S, xpos+2*linc, ypos); 
for (inti= 0; i < answer.size (); i++) 

10, line 20, sine 

ypos += 20; 

g.drawString(lookup[((Data) answer.elementAt (ill .c1], xpos, ypos) ; 
g . drawstring(lookup[((Data) answer.elementAt (i)) .c2], xpos +line, ypos +sine); 
g.drawstring(lookup[((Data) answer . elementAt (i)) .c3], xpos +2*linc, ypos); 
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g.drawLine( xpos + 10, ypos, xpos+linc-2, ypos+5); 
answer.e1ement:-.t(i}} .v12 == 2) ( 

if( ( (Data) 

g. drawLine ( xpos + 10, ypos-2, xpos+1inc-2, ypos+3) ; 
if( ((Data} answer . e1emen~t(i}} . v12 == 3} { 

g.drawline( xpos + 10, ypos-2, xpos+1inc-2, ypos+3}; 
g.drawLine( xpos + 10, ypos+2, xpos+1inc-2, ypos+7}; 

g.drawLine( xpos +linc+12, ypos+S, ;.:pos+2*linc, ypos}; 
answer.e1ementAt(i}) .v23 == 2){ 

g.drawLine( xpos +linc+12, ypos+3, xpos+2*linc, ypos-2) ; 
if( ( (Data) answer.elementAt(i)) .v23 == 3) { 

} 
) 

g.drawLine( xpos +1inc+l2, ypos+3, xpos+2*1inc, ypos-2) ; 
g.drawLine( xpos +1inc+12, ypos+7, xpos+2*linc, ypos+2); 
ypos+=20; 

B. Second Computer Program 

public class Generate 
{ 

protected String lookup[ ] "Li" , ''Be" , "B" , "C" , "N". "O" , "F", 

} 
if( ( (Data) 

"Ne", "Sc", "Ti" , "V", "Cr" , "Mn" ,
"Fe", 

protected String lkbond [] = { " " , "-", 
private boolean atom = true; 
public static final int NUMATOMS = 3; 
public static final int MAXATOM = 8; 
public static final int MINATOM = 1; 
public static void main(String[J args) 
{ 

"="- ' 
"Co", "Ni", "Cu", ''Zn"}; 

"-=" } ; 

//list of covalent bonds, 2,1 and 1,2 are both required 
int[] bondlist = { 
0, 1, 
1, 0, 
1,2, 
2, 1}; 
/*2,3 , 
3' 2, 
3,4, 
4,3, 
4,5, 
5,4}*/ 
/,'list of cordinate cova1ent bonds 1,2 represents atom[1] giveing 2 two electrons 
II note 1,2 isn't the same as 2,1 
int[] ccbondlist ={1,2}; 
//the electron count for atom ec[i], corresponds to atom[i] 
int[J ec = {8,8,8,8,8,8,8,8}; 
Generate test = new Generate(NUMATOMS,bondlist,ccbondlist,ec); 

int numbonds; 
int numccbonds; 
int[] bondlist; 
int[] ccbondlist; 
int[] elecount; 
int[] bond;// the covalent bond numbers that will change eveytime checkmol is called 
int[] ccbond;/ ,' the ccbond numbers that will change eveytime checkmol is called 
int nurnatoms; 
int atomn[];// the atom numbers that will change eveytime checkmol is called 

public Generate(int na,int[] bd,int[] cbd,int[] ec) 
{ 

numatoms = na; 
numbonds = {int)bd.length/4; 
numccbonds = (int)cbd.length/2; 
bondlist = bd; 
ccbondlist = cbd; 
elecount = ec; 
atomn =new int[na]; 
bond= new int[numbonds]; 
ccbond =new int[numccbonds]; 
fillarray(atomn,1); 
fillarray(bond,l); 
fillarray(ccbond,l); 
compute(na); 
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public static void fillarray(int list [] , int v alue) 
{ 

for(int i = 0 ; i < list . length ; i++) 
{ 

list[i] = v alue; 

public v oid compute(int pos) 
{ 

for(int i = MINATOM; i <= MAXATOM;i++)
{ 

atomn[pos-1] = i; 

bondcalc(numbonds); / ,·recursive algorithm for bond numbers; 
if(pos-2 != -1) 
{ 

compute (pos -1); 

atomn[pos-1] 1; 

public void bondcalc (int pas) 
{ 

for(int i = 1; i <= 3;i++) 
{ 

bond[pos-1] = i; 

ccbdcalc(numccbonds);//recursive algorithm for bond numbers; 
if(pos-2 != -1) 
{ 

bondcalc(pos -1); 

bond[pos-1] = 1; 

public void ccbdcalc (int pas) 
{ 

if (ccbondlist . length 0) 
{ 

checkmol (); 
return; 

for(int i = 1; i <= 3;i++) 
{ 

ccbond[pos-1) = i; 

I I print(); 
checkmol ();,'/recursive algorithm for bond numbers; 
if(pos-2 != - 1) 
{ 

ccbdcalc(pos -1); 

ccbond[pos-1] = 1; 

public void print(int[] list) 
{ 

} 

System.out.print("[ " ); 
if(atom) { 

else 

for(int i = 0; i < list . length;i++) 
{ 

System.out.print(","+lookup[list [i]]) ; 

System.out.print ( " 1 "); 

for(int i = 0; i < list.length;i++) 
{ 

System.out . print(" ," +list [ i] ) ; 

System.out.print( " 1"); 

public void printAll() 
{ 

for( inti= 0; i < atomn . length; i++){ 
System . out . print(lookup[atomn[i]]) ; 
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if(i ·< bond.length ) 
( 

System.out .print(lkbond[bond[i) ) ); 

System.out.println(); 

public int count(int list[) ,int v alue) 
( 

int c = 0; 
for(int i = O;i<list . length ; i++) 
( 

return c; 
};/count close 

if (list[i) == v alue) 
( 

C++; 

public int cccount(int list [) ,int value) 
{ 

int c = 0; 
for(int i = O;i<list.length;i++) 
{ 

if (i%2==0) f /if even continue 
( 

continue; 

if (list[i) == value) 
( 

return c; 
}//count close 
public void checkmol () 
( 

C++; 

for(int i = O;i < NUMATOMS;i++) 
( 

//10'splace contains Jl of covalent bonds of atom #
// l's place contains # of cordinate covalent bonds in atom i 
int bndtype = 0; 

t/gets the number of covalent bonds atom i has and stores in 10's bndtype 
switch ((int)count(bondlist,i)/2) 
{ 

case 0: 

case 1: 

case 2: 

case 3: 

case 4: 

default: 

break; 

bndtype += 10; 
break; 

bndtype += 20; 
break; 

bndtype += 30; 
break; 

bndtype += 40; 
break; 

System.out.println("error atom "+i+" can't be bonded to >4 atoms"); 

I I System.out.println (cccount (ccbondlist, i) + ' <<cc "+count (bondlist, i) /2); 
i /get the number of cc bonds atom i has and stores in bndtype 
switch ((int)cccount(ccbondlist,i)) 
( 

case 0: 

case 1 : 

case 2: 

case 3: 

case 4 : 

break; 

bndtype += 1; 
break; 

bndtype += 2; 
break; 

bndtype += 3; 
break; 

bndtype += 4; 
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switch statement 

case for t hem 

break; 
default: 

System.out.print1n("covalent bond error in atom "+i); 

I :the previous two switch's are used the determine the bonding of atom 'i' and this 

.' /tests the correct formula 
switch (bndtype) ,!.' since the atom donating cc bonds dosn' t need a formula there is no 

case 0: 
Sy stem.out .println("error bondtype 0"); 
//System.exit(1); 
break; 

case 1 : //receiving one ccbond 
if(!((atomn[i)) + (0 + 2) elecount[i ))) / .'if this statement is 

false start next recursion 

" +b ond [pos (i , 1) ) ); 

elecount[i ]J) 

elecount[i] )) 

return; 
break; 

case 2: ,/receiving two ccbonds 
if(! ( (atomn[i] l + (0 + 4) 

return; 
break; 

case 3: I /receiving three ccbonds 
if(!((atc.mn[i]) + (0 + 6) 

return; 
break; 

case 4: //receiving two ccbonds 
if (! ((atomn [i) l + (0 + 8) 

return; 
break; 

case 10://one covalent bond 

elecount [i])) 

elecount [i)) ) 

elecount[i) )) 

.i .'System . out.println( " i= " +i+ " atom #: "+atomn[i]+" bondtype: 

if(! (atomn[i) + bond[pos(i,1)) == elecount(i] )) 
return; 

break; 
case 11: //one ccbond and one covalent bond 

I I c1 + ( vl2 + 2 ) 2, 8,18 
if(! (atornn(i] + bond[pos(i , 1)) + 2 == elecount[i) )) 

return; 
break; 

case 12: //two ccbond and one cov alent bond 
I I c1 + ( v12 + 4 ) 2, 8,18 
if(! (atornn(i] + bond[pos(i,1)) + 4 == elecount[i) )) 

return; 
break; 

case 13: //three ccbond and one covalent bond 
/ , c1 + ( v12 + 6 ) 2, 8, 18 
if(! (atomn[i) + bond[pos(i,1)) + 6 == elecount [i))) 

return; 
break; 

case 20://two covalent bonds 
/I c1 + v12 + v21 
if(! (atornn(i] + bond[pos(i,1) ) 

return; 
break; 

== 2,8,18 
+ bond[pos(i,2) ) 

case 21:.'/two covalent bonds, and one cc bond 
/ c1 + ( v12 + 2) + v21 2,8,18 
if(! (atomn(i] + bond[pos(i,1)) + 2 + bond[pos(i,2) ) 

return; 
break; 

case 22:/ .' two cov alent bonds, and two cc bond 
I I c1 + ( v12 + 4 l + v21 2, 8, 18 
if(!(atomn[i] + bond[pos(i,l) ] + 4 + bond[pos(i,2)] 

return; 
break; 

case 30: I I three covalent bonds 

elecount[i ))) 

elecount [i))) 

elecount[i])) 

I I c1 + v12 + v13 + v14 2,8,18 
if(! (atomn(i] + bond[pos(i,1)] + bond[pos(i , 2) ] +bond [pos(i,3)) 

return; 
break; 

case 31: // three covalent bonds and one ccbond 
/ / c1 + (v12 + 2) + v13 + v14 2,8,18 
if(! (atornn[i] + bond[pos(i,1)] + bond[pos(i,2)) +bond [pos(i,3) ] 

return; 
break; 

case 40 : II four covalent bonds 
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c1 + v12 +  v13 + v 14 + v15 2,8,18 
if (! (atomn[i] + bond[pos(i, 1)] + bond[pos (i,2)] + bond[pos(i,3) ] + 

bcnd[pos(i,4)]== elecount[i] )) 

/* 

*I 

return; 
break; 

} .. /big switch close 
}//atom for loop close 

atom = true; 
System.out.println(); 
/ *System.out.print("atom ") ; 
print (atomn); 
atom = false; 
System.out.print(" bond ") ; 
print (bond) ; 
System.out . print(' ccbond " ); 
print(ccbond); 
System.out.println() ; */ 
printAll () ; 
.' / Keyboard.readint() ; 

System.out.println("Molecule: "+lookup[atomn[O] ] +lkbond[bond[O]]+lookup[atomn[l] ]) ; 
System.out.println( ) ; 
System.out.println( ) ; 

}//checkmol close 

/* This method is use to find the ' int bondnum' 'th occurance of atom ' int atom' 
int the covalent bonding array. This is used to calculate the number of electrons 
that the atom 'int atom' is getting from it's 'int bondnum' covalent bond . 
Eg. bondnum = 1 v12 

. , 
public int pos(int atom,int bondnum) 
{ 

0; 

2 vl3 
3 v14 etc . 

int count 
for(int i 0;i< bondlist.length;i+=2) 
( 
if (bondlist[i] ==atom){ 

count++; 
} 

i f (count == bondnum) ( 
int cc = 0; 
while (i > 4) 
{ 

i -= 4; 
CC++; 

return cc; 

return 0; 
}//pos close 

} //class close 

21 



Major: 

A pa 
of o{ A 

• e a 
a a 

'RR' 
2-3 of is 

above as as 
you You you 

as 

in .... _________ 

is hours of 

s __ ___ _ 

___________ ____ _ 

on oj on 
quaiicv 



Title: Algebraic Use of Closed Shell Electron Configurations in Predicting Stable 

Molecular Species 

Name: Jonathan Geach 

Faculty Adviser: Dr. Ray Hefferlin 

My project will be to determine the validity of a model proposed by Dr. Hefferlin 

for determining molecular structures based up on the added stability of closed-shell 

electron configurations. I will do this by using the model proposed by Dr. Hefferlin to 

find all predicted molecules for a given number of atoms. I will then determine whether 

the molecules predicted are in fact real molecules. 

Finding all the predicted models involves determining all the possible three-

dimensional structures and all of the possible bonding conditions and solving a set of 

equations for each case and then fmding what molecules the solved equations predict. 

After fmding the molecules and determining if they exist I will use statistical 

methods to attempt to show statistical viability. 
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