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The Basics 

There has always been a need for secrecy. Whether vital wartime military information, a bank 

transaction, or a letter to a friend, governments, organizations, and individuals have always been 

and always will be concerned with keeping their secret and transmitting private information 

securely. Hence, the science known today as cryptology was developed. Cryptology 

encompasses two opposite yet related disciplines: cryptography and cryptanalysis. The word 

cryptography is derived from the Greek words krypto (secret) and graphos (writing) [4, p. 13] and 

refers to the aspect of cryptology concerned with enciphering, or disguising, a message in such a 

way that only the sender and the intended recipient can decipher it. Cryptanalysis is the enemy of 

cryptography in cryptanalysis is the science of deciphering the enciphered message without 

the key and without the consent of the sender or the receiver [1, p. 2]. 

It is important that we understand that cryptology is a science of ciphers and not codes. The 

difference between a code and a cipher is that in a cipher each letter of the original message is 

replaced with a different and distinct letter or symbol, or rearranged in such a way that it is 

unintelligible [ 4, p. 33]. A code replaces entire words or phrases with other words or phrases 

having a secret meaning. In order to understand a code, the recipient must have access to a code 

book that the code into an understandable and meaningful message. Because 

encoding and decoding require a hard copy, it is difficult to keep the code secret; if channels are 

not secure for sending messages, they are certainly not secure for transmitting the code. Another 

problem arises in the event that the code is broken. Another code language must be devised, 

written out, and distributed to all intended senders and receivers. This is a timely and insecure 

process which may set back the progress of the operation. 
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Ciphers, on the other hand, are mathematical systems of disguising a message using a key. The 

key is usually the confidential part of a mathematical algorithm that arranges the alphabet in a 

certain pattern. It is also used for deciphering the message. 

The advantages of using a cipher instead of a code are numerous. Ciphers allow more 

explicit transmissions since every letter of the alphabet may be used distinctly to form any word 

desired. As you will see, the key to a cipher is also more secure to transmit than a code book. 

Keys are relatively short; they can be memorized or agreed upon ahead oftime; and they can be 

changed frequently, which helps foil the efforts of any diligent cryptanalyst interested in 

communications between specific sources [1, p. 6]. 

Cryptology, in various forms and styles, has been used for ages to communicate secret 

information. of the earliest cryptographic devices dates back to B.C. and the reign of 

the great Lysander of Sparta [ 4, p. 28]. Lysander devised a simple yet effective apparatus called 

a scytale which he used to encrypt and decrypt messages sent from one territory to another. The 

scytale was composed of a cylindrical object such as a staff or baton around which the sender 

wound a long, thin strip of leather or parchment in such a way that it created a spiral. Then he 

wrote a message on the parchment lengthwise along the cylinder, placing one letter on each 

overlapping turn of the spiral, without leaving spaces between words, until he had written a 

message all the way around the tube, as shown in Figure 1 [ 4, p. 30]. 

Figure 1. The Spartan scytale. 
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When the strip was unwound, the messenger carried a long strip of parchment with a column 

of meaningless, evenly spaced letters down the left hand side, giving no indication ofthe method 

of encryption. a person with a cylinder of equal diameter could easily decipher the 

message. Lysander's scytale is the first known transposition cipher, a cipher in which 

remain what they are, but not where they are [1, p. 

An ambitious cryptanalyst could attempt to wind the parchment using cylinders of several 

different diameters, looking for the spiral to start forming words. However, he would first have 

to know that the key was indeed a cylinder. Several tactics such as writing each word backward 

or filling every other space with a nonsense letter would make his task much more difficult. 

Additive Ciphers 

Some of the most common and effective methods of encryption are substitution ciphers, 

which are ciphers involving permutations of the alphabet. A permutation is a mathematical 

algorithm that assigns to each member of a set a unique member of the same set. 

Table 1 represents a permutation of a set, the alphabet. Each letter of the alphabet is assigned 

a new and unique letter. lfwe wanted to encode a message using the permutation in Table 1, we 

would first decide on the cleartext, which is the message in plain English. Then we would apply 

the permutation to arrive at a ciphertext, the encrypted message [1, p. 3]. 

Table 1. Alphabetic permutation. 
a b c d e f g h i j k I m n p q r s t u v w X y z 

m n p q r s t u v w X y_ z a b c d e f g h i j k I 

cleartext: Send the money on Tuesday 

ciphertext: eqzpftqyazqkazfgqepmk 
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By eliminating spaces between the words in the ciphertext, we give no indication of where 

words begin and end, making the cryptanalyst's job more difficult. We can assume that the 

intended receiver will be able to space the words once the message has been deciphered. 

Julius Caesar used the above method in the century B.C. to convey his secret messages. 

He permuted the alphabet by a standard shift of twenty-three letters to the right, in other words, 

three letters to the left [3, p. The shift was standard so the key did not change. A 

permutation of Caesar's alphabet would be represented by Table 2. 

a e . T bl 2 C aesar s 
a b c d e f g h i j k 1 m n p q r s t u v w X y z 

d e f g h i j k 1 m n p q r s t u v w X y z a b c 

If Caesar sent the message ohdyhdwplgqljkw, the recipient would know that to achieve the 

cleartext he must replace each letter of the ciphertext with the letter three positions before it in 

the alphabet. Thus the cleartext would read leaveatmidnight, which the recipient would easily 

separate into leave at midnight. 

This method of permuting the alphabet is known as an additive cipher and can be 

using an algorithm in modular arithmetic. Modular arithmetic deals with number systems that 

repeat themselves in cycles. There are many common examples of such number systems. The 

days of the week are numbered in cycles; so are twelve and twenty-four hour clocks. Although 

most of us don't realize it, we tell time in modular arithmetic. Suppose it is a.m .. If we 

want to know what time it will be in hours according to a twelve hour cycle, we add two 

hours to 1 to reach the end of that twelve hour cycle and start a new cycle with the three 

remaining hours. in hours it will be p.m .. 
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We can represent this operation by the mathematical statement 

3 + 5 (mod 12). 

What this statement tells us is that 3 is equal to the remainder of + 5 divided by 12. 

If we give each letter of the alphabet a numerical value as represented in Table 3, we notice 

that the alphabet can also be considered a cycle of numbers. 

Table 3. Numerical values for additive ciphers. 
a b c d e f g h i j k l m 

1 2 3 4 5 6 7 8 9 11 12 13 

n p q r s t u v w X y z 

14 15 16 17 18 19 21 22 23 24 25 26 

The cycle consists of26 numbers and can be permuted using modular arithmetic, specifically by 

the following algorithm [3, p. 252]: 

y = the numerical value of 
the ciphertext letter 

x = the numerical value of 
the cleartext letter 

d = the number of units shifted 

y x + d(mod26) 

(mod 26) indicates that y will be equal to 
the remainder of x + d divided by 26 

(Note that in the algorithm y, x, and d represent variables, not letters of the alphabet.) 

To encrypt the word to with a shift often units, we have: 

Fort, 
X= d = 

y + (mod 26) 
y (mod 26) 
y = 4 

Foro, 
x= 15, d= 
y 15 + (mod 26) 
y 25 (mod 26) 
y=25 

The fourth and twenty-fifth letters of the alphabet are dandy, so to is encrypted to dy. 
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The key to this cipher lies in the value assigned to d. d may be agreed upon ahead of time and 

may vary. For example, d may be the sum of the digits of the date the message is sent. Changing 

the value of d makes it more difficult for the cryptanalyst to find the key to the cipher. 

This additive cipher is useless if the cryptanalyst knows that messages are being encrypted 

using a simple shift of d units. There are only twenty-six possible permutations of the alphabet 

using an additive cipher, as you can see in Table 4. A cryptanalyst who suspects that an additive 

cipher is being used need only attempt 26 shifts on a small part of the message to determine the 

proper value for d. 

Table 4. Permutations using an additive cipher. 

d 

1 

2 

3 

4 

5 

6 

7 

8 

9 

23 

24 

25 

a b c d e f g h k 

a b c d e f g h j k 

b c d e f g h j k 

c d e f g h j k m 

d e f g h j k m n 

e f g h j k m n 

f g h j k m n p 

g h j k m n p q 

h j k m n p q r 

k m n p q r s 

k m n p q r s 

x y z a b c d e f g h 

y z a b c d e f g h 

z a b c d e f g h 

m D p q r s t u v w y z 

m n p q r s u v w X y z 

m n p q r s u v w X y z a 

n p q r s u v w X y z a b 

p q r s u v w X y z a b c 

p q r s u v w X y z a b c d 

q r s u v w X y z a b c d e 

r s u v w X y z a b c d e f 

s u v w X y z a b c d e f g 

u v w X y z a b c d e f g h 

u v w X y z a b c d e f g h 

j k 

j k 

mnopqr s u v w 

mnopqr s W X 

k mnopqr s W X y 
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There are other techniques that cryptanalysts use to attempt to decrypt secret messages. 

of these involves the use of frequency tables. In the English language, as in any other language, 

there are certain letters that are used more than others. Researchers have analyzed large 

quantities of text in a variety of writing styles to determine the frequency with which each letter 

of the alphabet appears. Although different studies show slight differences in the exact 

numerical value ofthe frequencies, they agree on the popularity, so to speak, of the letters. A 

sample frequency chart is shown in Table 5 p. 

T bl 5 R 1 . fr a e . e equenc1es o fth 1 e etters o fth 1 h b e a et. 
letter relative frequency % letter relative frequency % 

a 8.167 n 6.749 

b 1.493 

c 2.782 p 1.929 

d 4.253 q 

e r 5.987 

f 2.228 s 6.327 

g t 

h u 2.758 

i 6.966 v 

j w 

k X 

y 1.974 

m z 

According to Table the letter e is used more than any other letter in the English language. It 

has a frequency of approximately 13%, which means that approximately thirteen out of every one 

hundred letters written in English is the letter e. 
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Frequency tables are useful tools to cryptanalysts. If the cryptanalyst suspects an additive 

cipher is being used, his first step is to look through the message and note what letter appears the 

most. If, for instance, the letter y appears more than any other, he next looks at a table similar to 

Table 4 and finds the letter y under the cleartext letter e. He notices that the shift for this 

permutation is d = By decrypting a small portion ofthe message with a shift units to 

the left, he can soon tell if he guessed the correct shift. If the message does not make sense, it 

may be that the letter y was substituted for the letter t, which is the next most frequently used 

letter. Another possibility that the cryptanalyst must face is that the message was encrypted by 

some other method. 

Affine Ciphers 

Affine ciphers were developed to add to the security of ciphers such as the above additive 

cipher. An affine cipher incorporates multiplication into the algorithm for an additive cipher. 

For this process, our key consists of two numbers d and m. The algorithm [3, p. 253] is: 

y the numerical value of 
the ciphertext letter 

m positive integer, relatively 
prime to 26 

x numerical value of 
the cleartext letter 

d the number of units shifted 

y mx + d(mod 26) 

(mod 26) indicates thaty will be equal 
to the remainder of mx + d divided by 26 

(Remember that m, x, y, and d are variables, not letters of the alphabet.) 

I will demonstrate the use of this algorithm by encrypting the letter g using an affine cipher 

with m = 5 and d = 11. 

To encrypt g, which is the seventh letter of the alphabet, we have 
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x = 7, m = 5, d = 11 
y 5(7) + 11 (mod 26) 

y 46 (mod 26) 

Thus, g is encrypted tot, the twentieth letter. Table 6 shows the permutation of the alphabet 

achieved similarly. 

6. Permutation using an affme cipher with m = 5 and d = 11. 

By looking at the table, we can see that the permutation does not follow in alphabetical order. 

A cryptanalyst does not know the key, the values of m and d. If he analyzes a portion of a 

message and notices that the letterj appears more than any other, he will be correct in assuming 

thatj is the letter assigned to e. Assuming that the message was encrypted using and additive 

cipher, he will deduce that the value of d = 5, since there is a shift offive units between e andj. 

However, when he decrypts the letter h with a shift of five units, he will arrive at the letter c. 

From the table we see that this is incorrect; his actually assigned too. 

There are many possibilities for m and d that will encrypt e to j. The cryptanalyst must make 

a correct assumption as to the decryption of at least one other letter of the ciphertext in order to 

begin formulating possibilities. 

The Enigma Ciphers 

As we have stated, military operations rely largely on transmitting tactical information 

secretly. An intercepted message could mean a drastic change of plans, at best. Imagine the 
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consequences of a military power sending messages using a system they believe is completely 

secure while every single message is being intercepted and deciphered by its opponent. This was 

the case for Germany during World War II. The German military devised the Enigma machine to 

encipher and decipher messages. These machines were actual physical pieces of machinery 

distributed to any stations that sent or received messages. The system was thought to be so 

secure that the enciphered messages were transmitted over open channels. 

The machine consisted of three rotors about the size and shape ofhockey pucks. either 

side of these rotors were 26 electrical contacts, representing each letter of the alphabet. The 

Enigma machine also had an input device, similar to a typewriter keyboard, and an output device, 

which consisted of a series of lights indicating the enciphered letter. 

The cleartext letter was entered, sent through the rotors and was converted into ciphertext. 

The rotors of the Enigma machine were designed in such a way that the first rotor shifted by one 

space after each letter was entered. When 26 letters of the message had been entered, the rotor 

completed one full circle. This process was repeated by the second rotor and then the third. No 

two letters were ever enciphered using the same circuit. Figure 2 [3, p. 258] is a diagram visually 

demonstrating this process for a smaller, six-letter alphabet. Figure 3 [3, p. 259] shows the 

position of the rotors after encrypting one letter. 

Figure 2. Diagram of a possible Enigma circuit. 



Figure 3. Enigma circuit after encrypting one letter. 

The machine also had several settings at which the rotors could be placed to initialize sending 

or receiving the message. There were basic settings which were standard for all machines in the 

system. The initial portion of the message was encrypted using one of the basic settings. This 

portion of the message would include the rotor settings at which the rest of the message was 

enciphered. 

Another feature of the Enigma machine was that the process was completely symmetrical. If 

the machine encrypted the letter g to the letter b, it would in turn decrypt b to g. Although this 

was essential for using the machines to decipher messages, it was one of the factors that made it 

possible for the cipher to be broken. 

The key to the cipher was discovered by a group of British mathematicians led by Alan 

Turing. To this day little is known about their activities in breaking the cipher. However, we do 

know that the group achieved access to a reconstruction of an Enigma machine. They did not 

know the original setting or the order of the rotors. To solve the problem Turing built a machine 

of his own. A machine called the Colossus was developed to rapidly check all possible rotor 

settings for the messages of the day. The Colossus was an ancestor to what we know today as the 

modem computer [3, pp. 256-62]. 
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Public Key Cryptography 

The methods of cryptography that we have studied so far have a common downfall. They are 

all symmetrical ciphers. This means that the same algorithm and key are used to encrypt and 

decrypt the message. the security of the key becomes an issue. Anyone who sends a 

message can decipher a message. Distributing the key to those with whom I choose to 

communicate becomes a hazardous procedure. Even if the key is secure, the increased capability 

of computers makes it more likely for the key to be determined. 

With the advance of computer technology, electronic financial transfers, and the Internet, 

sending messages or data securely has taken on a whole new meaning. The government, 

corporations and individuals digitally transmit information that, for understandable reasons, must 

be kept private. 

Hence, mathematicians formulated what is known as public key cryptography. Public key 

cryptography uses an asymmetrical algorithm. In other words, in these algorithms, the key used 

to encrypt is different than the key used to decrypt. Using this method, the key to the cipher is 

made public. Anyone can use it to send an encrypted message. Although the key for encrypting 

the message is public, the key for decrypting the message is private, and only the intended 

recipient can decrypt the message. 

There are many methods of public key cryptography. of the oldest and most popular is a 

system known as the method. This method was discovered at the Massachusetts Institute of 

Technology by Ron Rivest, Adi and Leonard Adleman in 1978 [3, p. 267]. It has 

withstood many years of cryptanalysis and is still frequently used because it is easy to understand 

and implement [5, p. 467]. 
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The algorithms behind this method ofpublic key cryptography are based in the theory of 

prime numbers and modular arithmetic. Prime numbers are positive whole numbers that are 

divisible only by themselves and by the number 1. Composite numbers are divisible by at least 

one number other than itself and the number 1. A composite number created by two prime 

factors is divisible only by itself, by 1, and by its two prime factors. 

Computer programs exist that find very large prime numbers and multiply them together to 

achieve a much larger composite number. However, it is practically impossible for even the 

most powerful computers to factor products of large prime numbers. a much smaller scale, 

we can easily see that the numbers 53 and 71 are prime. But it is not so easy to tell that the 

number 3763 factors into 53 71. 

This difficulty in factoring products of large prime numbers is the basis of public key 

cryptography. We can easily create a number that is the product of two large prime numbers, 

distribute it in a public key directory, and receive messages encoded using our public number. In 

order to decipher the message, we must have access to the factors of this very large composite 

number, prime numbers of fifty digits or more. 

I will demonstrate the RSA method of public key cryptography with an example using small 

prime numbers in order to perform the calculations without the aid of a computer. (A similar 

example appears in [3, p. 269].) 

First, I will choose two prime numbers p and q. I will keep these numbers secret, while the 

product pq I will publish in a directory of public keys. I must also choose a secret number N that 

is relatively prime to the product (p-l)(q-1). Two numbers are relatively prime ifthey have no 

common prime factors. I will also publish a number M such that 1 mod (p-1)(q-1). 
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I select p = 17 and q = 19. So pq = (17)(19) = 323. The product (p-1)(q-1) = (16)(18) = 288. 

I can choose N to be any number relatively prime to 288. I choose N = 11. Now I must find the 

value ofM. By the formula above, M must satisfy 1 mod 288. This means that M must 

be a number such that when M is multiplied by 11 and divided by 288 the remainder equals 1. 

To find the value ofM, I can use the Euclidean algorithm: 

a= q1b+r1 . 

b = + r2 

rl = + r3 

The algorithm is used in this continued fashion until the desired remainder is achieved. 

In our particular case, a = 288, b = 11. I must find the other values. 

a= q1b+r1 
So, 288 = q1(11) + r1 

288 = 26(11) + 2. 

Now, b = + r2 
11 = + r2 
11 = 5(2) + 1. 

I have achieved the desired remainder, 1. Next I substitute from the algorithm above to get 

1 equal to the difference of multiples of 11 and 288. 

1 = 11 - 5(2). 
But, 2 = 288- 26(11). 
So, 1 = 11 - 5(288- 26(11)) 

1 = 131(11) - 5(288). 

From this I have established that M = 131. 

Now I have all my numbers, private and public, and am ready to send and receive messages. 

The numbers that I will publish in the public directory are pq = 323 and M = 131. My private 

numbers are (p-1 )( q-1) = 288 and N = 11. Note that a cryptanalyst cannot deduce these secret 
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numbers from any of my public information. He does not know the value of p or q, only that 

pq = 323. 

First of all, users of this public key system must agree upon a numbering system for the letters 

of the alphabet. The system previously described in Table 3 will not suffice because we must 

make a distinction between letters such as ac, with numerical value 13, and the letter m, with 

numerical value 13. The most common numbering system is to assign numerical values to the 

alphabet as shown in Table 7. 

T bl 7 N 1 1 a e . umenca va ues asstgne d t th 1 h b t ea pJ a e or encryp11on. 
a b c d e f g h i j k 1 m 

11 12 

n p q r s t u v w X y z 

13 14 15 16 17 18 19 21 22 23 24 25 

For an example ofhow this system works, I will demonstrate the steps necessary for someone 

to encrypt the letter d and for me to decrypt it. To encrypt the letter d, the sender must first 

assign it the numerical value The sender must look up my public numbers, pq = 323 and 

M = 131, in the directory and encrypt the numerical value of din the following manner: 

3131 z (mod 323). 

The sender must now calculate the correct value for z, the numerical value of the ciphertext 

letter. The process is tedious by hand calculations but quite simple for a computer. I will go 

through the steps for finding the value of z by hand. Those of you not familiar with modular or 

exponential arithmetic may want to skip the following explanation. 

I know that 3131 3c128 + 2 + t) 3128 32 31 (mod 323). The values of 31 (mod 323) and 

32 (mod 323) are elementary. I can find the value of3 128 (mod 323) in the following way: 
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31 3 (mod 323) 
32 9 (mod.323) 
34 92 81 (mod 323) 
38 81 2 (mod 323) 
316 101 2 188 (mod 323) 
332 1882 137 (mod 323) 
364 1372 35 (mod 323) 
3128 352 256 (mod 323) 

From the above steps, I see that 

3 131 3128. 32. 31 

3 
129 (mod 323). 

So z = 129 is the encrypted numerical value sent to me through my computer system. 

But how do I know that 129 represents the letter d? Here is where my secret number N comes 

into play. Remember that my secret numbers are (p-1)(q-1) = 288 and N = 11. When I receive 

the number 129, I use N to decipher 129 in the following way: 

129 11 w (mod 323). 

The value that I find for w will be the numerical value for the cleartext letter sent. This again is a 

tedious process by hand, but it is fast and simple when done by computer. I know that 

12911 = 1298 By finding the values of each of these factors (mod 323), I can arrive at 

the value for w. 

First I see that 

1291 129 (mod 323) 
1292 168 (mod 323) 
1294 1682 123 (mod 323) 
1298 1232 271 (mod 323). 
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So, 

129 11 1291 

271 . 168. 129 
3 (mod 323). 

I arrive at w = 3, or which is the numerical value for the letter d, the letter that was originally 

encrypted and sent. 

In reality the numbers used for p and q are as large as digits long, making the products pq 

and (p-1 )( q-1) over one hundred digits long. Remember that p and q are prime, thus the only 

factors ofpq are p and q. This number pq is practically impossible to factor. A cryptanalyst 

must know the values ofp and q to find the value of(p-l)(q-1). Remember that I choseN and 

found M based on (p-l)(q-1) = 288. 

of the important features of the RSA method is that it allows users to sign their messages 

in a way that eliminates impostors. The signature is applied at the end of the message and uses 

the private and public numbers of both the sender and the recipient in a fashion similar to that of 

sending a message. For example, Adam sends Betty a message and wishes to sign it so that Betty 

knows that it is from him and not from Chuck. After completing the message, Adam breaks his 

name down into numerical values and uses his secret number to encipher it. He then enciphers 

the new numbers using Betty's public numbers and sends the message to her. Betty receives the 

twice encrypted signature. She first decrypts it using her private numbers and arrives at the 

signature encrypted with Adam's private numbers. Since the message was enciphered using 

Adam's private numbers, it can be deciphered using his public numbers which are accessible to 

Betty through the directory. Adam's public numbers will only be useful in deciphering a 

message that was enciphered using Adam's private numbers. If Betty is successful in 
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deciphering the signature she is certain that it was sent by Adam. 

Several questions arise concerning the use of the RSA method. First of all, how do we find 

two 50-digit prime numbers? Mathematicians and computer programmers have developed 

computer software that is capable of finding these very large numbers. The software must be 

used on the proper hardware and very powerful computers are required. Companies specializing 

in finding these numbers sell them to qualified buyers. 

Will we ever run out of usable prime numbers? The answer is no. Prime numbers of up to 

512 bits in length can be used for this method of encryption. Approximately 10151 of these prime 

numbers exist. Compare that to atoms in the universe. This large number of primes 

virtually eliminates the chance of two people accidentally picking the same number [5, p. 258]. 

There are legal questions that arise from such secure methods of encryption. As software 

used for public key cryptology becomes faster and more refmed, it is more practical for private 

citizens and corporations to implement. The government is concerned by the increased 

availability of these methods and has placed certain restrictions on the sale and distribution of 

software used to implement them. The main concern is that by allowing these encryption 

systems to be distributed publicly, the government will lose access to information it may need. 

Although most of us feel that the government should not have access to our information, there 

are certain instances when it is necessary. government runs intelligence operations that keep 

track of the activities of foreign and domestic organizations and governments that may possibly 

pose a threat to our national security. Also, if these powerful encryption methods were publicly 

available, organized crime operations right here in our country would be able to secure their 

transactions and transmit plans in such a way that they would be unobtainable for prosecution. 
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For this reason, the Clinton administration has passed laws regulating domestic and foreign 

distribution of powerful encryption software [2, p. 33]. 

Developers and potential users of this software hold a different point of view. By limiting 

distribution, the government has regulated the right to privacy and has limited the developers' 

financial gain. Regardless of regulations by the government, foreign countries will 

eventually develop the software to implement this type of encryption system. The same 

technology will eventually be used, without any benefit to our national developers and our 

economic system. 

Another argument against the government's position arises from corporations who wish to 

transmit financial, legal and development information securely, without their competition 

eavesdropping. Many corporations have bases around the world and transmit information 

electronically. Ifthe information is not highly secure, rival corporations can intercept and 

decipher messages vital to a corporation's success. The government spends millions of dollars 

each year in efforts to stop this violation of privacy and to prosecute guilty parties. This problem 

would not exist if messages were transferred using the restricted cryptographic techniques. 

possible compromise between these points of view would be to devise an escrow system. 

receiving prime numbers, the buyer must register them with a neutral agency. The 

numbers would be accessed only as required and permissible by law. If the market is opened 

promptly, the American corporations will supply the hardware and software. Since the 

technology would be based domestically, foreign subscribers would be required to adhere to the 

same procedure. A system such as this one would give the public the right to privacy while 

allowing the government to access delinquent operations and maintain national security. 
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Computer technology is increasing everyday. The method and other methods of 

encryption that depend on the inability of computers to perform certain functions may one day 

become obsolete. Already computers and computer software have been built that will factor 

numbers originally used for the method. Although the use of larger numbers has 

temporarily eliminated this problem, public key cryptography may one day be useless. However, 

the need for privacy will not become obsolete. New methods will develop to replace the old, the 

science of secrecy will continue evolving to meet the needs of society. 



J 

References 

1. A. Beutelspacher, Cryptology, Mathematical Association of America, Washington, D.C., 
1994. 

2. K. Dam and H. Lin, National Cryptography for the Information Age, Issues in Science 
and Technology, 12 (Summer 1996), 33-38. 

3. D. M. Davis, The Nature and Power of Mathematics, Princeton University Press, New Jersey, 
1993. 

4. J. Laffm, and Abelard-Schuman, New 1973. 
5. B. Schneier, Applied Cryptography (2nd ed.), Wiley, New 1996. 

21 




	Southern Adventist University
	KnowledgeExchange@Southern
	1997

	Cryptology Through Time
	Susan Danelle Vaucher
	Recommended Citation


	tmp.1377111470.pdf.xoJL7

