
SOUTHERN ADVENTIST UNIVERSITY, SCHOOL OF COMPUTING, 2022 1

Realtime Visualization of Kafka Architecture
Matthew Jensen, Miro Manestar, Germán H. Alférez

Abstract—Apache Kafka specializes in the transfer of incredi-
bly large amounts of data in real-time between devices. However,
it can be difficult to comprehend the inner workings of Kafka.
Often, to get real-time data, a user must run complicated com-
mands from within the Kafka CLI. Currently, most tools used to
visualize data streams over Kafka are commercially licensed and
complicated to use. These tools also lack corresponding research
to explain their implementations. Our contribution is a tool that
monitors Kafka consumers, producers, and topics, and displays
the flow of events between them in a web-based dashboard. This
dashboard can be used to facilitate the comprehension of the
complexity of a Kafka architecture, specifically for practitioners
unfamiliar with the platform.

Index Terms—Kafka Architecture, Data Visualization, Dash-
board, KafkaJS

I. INTRODUCTION

AS the expectations placed upon a piece of data-heavy
software increase, so does the scope of the tools used

to support those expectations. To that end, numerous tools
have been developed over the years with the aim of supporting
complex data-driven tasks easy, especially in today’s heavily
cloud-dependent environment. Apache Kafka is one such tool,
specializing in delivering high-performance data streams in
a distributed environment [1]. However, as project require-
ments increase and the complexity of infrastructure grows to
accommodate those requirements, the flow of data through
Kafka becomes more convoluted. Subsequently, it can become
increasingly difficult to understand its configuration and the
path of the data as it flows throughout the application. In order
to grasp the Kafka architecture, practitioners are often forced
to run convoluted commands from within the Kafka CLI.

Thus, the contribution proposed here is a dashboard that
can quickly be integrated into an existing Kafka architecture
to gather data. This would enable an intuitive display of a
Kafka architecture and the flow of data throughout it.

This paper is organized as follows: Section II presents the
state of the art. Section III provides the theoretical framework
upon which our tool is built. Section IV covers the methodol-
ogy used to create this tool. Finally, Section V discusses the
implications of our tool and outlines opportunities for further
research.

II. STATE OF THE ART

Apache Kafka is widely used in applications requiring a
messaging system with high throughput and scalability while

Matthew Jensen - matthewljensen@southern.edu
Miro Manestar - mirom@southern.edu
Germán H. Alférez - harveya@southern.edu
Miro Manestar, Matthew Jensen, and Germán H. Alférez are with the

Department of Computer Science, Southern Adventist University, Collegedale,
TN, USA

maintaining low latency [2]. It is used in major companies
like Adidas, The New York Times, and Pinterest to handle
real-time predictions, monitoring, and content distribution [3].

The developers at SoftwareMill created a visualization that
shows the designation between nodes, partitions, and replica-
tion factor [4]. This website operates off of meaningless data,
and does not actually connect to a Kafka broker. However,
this type of educational visualization accomplishes a similar
goal to our tool. It displays a Kafka architecture and its
data flows in an easy-to-understand, web-based, and data-
visualizing dashboard.

OffsetExplorer is an application that enables a connection
to an Apache Zookeeper and Apache Kafka Broker to display
consumers, messages, and brokers. However, it does not dis-
play producers, and it does not appear to support later versions
of the Kafka broker software [5].

Aurisano et al. designed a visualization to present data
over a spatiotemporal axis, including both space and time,
to show the movement of tracked animals within a region
[6]. While the animal movements analyzed do not perfectly
match the Kafka events, this paper is interested in, both share
a spatiotemporal nature (Geographical vs. Kafka Locations).

III. METHODOLOGY

The steps of our methodology are laid out as follows.

A. Gathering Information and Planning

There are many dimensions a Kafka visualizer could expand
into. In order to decide what should be present in the tool,
an examination was made into existing Kafka architecture
visualizers. A specific focus was the methods and applications
by which a user could query the state of various nodes
throughout that architecture and also examine how data was
flowing through it. The SoftwareMill visualization was found
during this stage. Its simplicity and direct focus were noticed
[4].

The scope was narrowed to visually describe the connection
between the components of Kafka that users can control,
specifically the producers, topics, and consumers. Aside from
some configuration tweaks, once the Kafka architecture is
set up, developers are mostly coordinating the connections
between producers and consumers. Because this is the area
where Kafka developers spend their time, it became the focus
of our visualizer.

It was determined that the key way to link together the
various pieces of the Kafka architecture are via topics. Pro-
ducers produce events that are stored in topics and consumers
consume events based on the topic they reside in.



SOUTHERN ADVENTIST UNIVERSITY, SCHOOL OF COMPUTING, 2022 2

B. Connecting to a Kafka Broker

There are many ways to connect to Kafka. The developers
at Confluent have created a tool called Kafka Connect that
provides integrations to RDBMS’ like Oracle, document stores
like MongoDB, cloud object stores like Amazon S3, and cloud
data warehouses like Amazon Redshift [7].

However, since the goal is to create a platform-agnostic
visualizer, an API for javascript/node.js was preferred. That
led to KafkaJS, a library that provides an Apache Kafka
client that runs within Node.js. There are a multitude of
visualizer libraries available for Node.js which made it perfect
for the tool’s design requirements. Not only does KafkaJS
work within the chosen environment, it also provides ample
documentation and community support.

C. Setup a Testing Environment

The simplest way to create a Kafka architecture is to set it
up within Docker. Preconfigured docker images are available,
and they are likely the starting place for new Kafka developers.
This is perfect for this research work because the developers
most likely to use a Docker instance to run Kafka are likely
unfamiliar with how it works. They are our target audience.

However, a Kafka testing environment is only as good as
the data passing through it. Scripts were created that start up a
variety of producers and consumers which create and consume
on specific topics. These nodes are then available for retrieval
via the Kafka client to be displayed within the visualization.

D. Retrieving the Pertinent Information

KafkaJS makes the retrieval of most of the displayed
information relatively easy. Topics can be queried and are
returned as a list. Consumers can also be easily retrieved,
along with a list of the topics each consumer is subscribed
to.

Unfortunately, the information relating to the producers is
not as readily available. Because producers do not maintain
an active connection to the broker, their information is not
available to simply query. There are multiple approaches that
can be taken to still retrieve it, but all of them increase the
complexity and overhead of our tool. The tool must know
what producers exist, how to identify them, and how many
events they are creating. The approach chosen to retrieve
this information was to create secondary producers that tally
up the number of messages being sent by their primary
producer, and then periodically send this tally, along with a
producer identifier, to a separate topic being consumed by the
monitoring server.

E. Displaying the data

There are two different visualization methods the tool
implements in order to communicate the architecture to users:
a graphical representation of the Kafka architecture and an
informational display which provides details about each node.

The JavaScript graphing library, Vis.js was used to visualize
the producers, topics, and consumers as nodes in a directed
graph. Both the producers and consumers connect to topics.

The edges show underlying “data pathways” that connect
producers and consumers.

An interface that is more focused on displaying in-depth in-
formation about each producer and consumer is also included.
This is where the volume of data being produced can be seen
and examined in more detail.

IV. TOOL ARCHITECTURE

Underpinning the research presented here is a union of
several technologies, all working together to support our
approach to the problem of visualizing a Kafka architecture.
In this section, the design of the tool, the technologies used,
and how they all work together is described. Figure 1 shows
a visual map with the relationships between the technologies.

Apache Kafka is an open-source event streaming plat-
form. It is primarily used for data pipelines requiring high
performance, analytical data streaming, data integration, and
high-availability applications1. It utilizes distributed servers to
receive and store data. Another piece of the Kafka architecture
are clients. There are two types of clients: producers and
consumers. Producers create events which are then streamed
to the servers and categorized by topic. Clients subscribe to
these topics and events within these topics are streamed from
the servers to them.

Docker

Apache Kafka

Runs on

React

Frontend Node.js

Runs on

Frontend/Visualization

Presents

Socket.IO

Updates

Backend Node.js

Runs on

Data Collection
Server

Serves

KafkaJS

Connects to Runs on

Fig. 1. Technology Stack. Read labels from top to bottom.

Docker enables the containerization of applications. It is
useful in development and testing environments2. Docker
runs a containerized version of Apache Kafka. This Apache
Kafka container is the core piece of our testing architecture.
JavaScript scripts are utilized to start producers and con-
sumers, but all of the traffic is passing through this Kafka
instance.

The Data Collection Server handles the collection of data
from the Apache Kafka instance. It passively listens to sec-
ondary producers running within each producer. It can also
dynamically start up consumers to get details information
on specific topics and producers. This data is then stored
and made available for access by the front-end. In order
for our data collection server to access information from
Kafka, KafkaJS is used. KafkaJS is an Apache Kafka client

1https://kafka.apache.org/
2https://docs.docker.com/get- started/overview/



SOUTHERN ADVENTIST UNIVERSITY, SCHOOL OF COMPUTING, 2022 3

for Node.js3. It runs in a Node environment which fits into
this tool’s tech stack because the data collection server is
already running a Node environment. In order to send real-
time updates to the front-end, to display statistics and message
flows, Socket.io is employed. Socket.io is a Node.js library
that enables real-time event-based communication between the
browser and the server4.

The front-end is where users can access real-time updates
about their Kafka architecture, including currently active pro-
ducers, topics, consumers, the way they all connect, and finally
the data flowing through each topic. To this end, React was
used for building a dynamic, JavaScript front-end for the tool.
React makes it simple to create interactive and dynamic user
interfaces5, so it was determined it would be a good fit for the
Kafka visualizer.

Both the front-end and backend require a number of li-
braries. The backend needs to run as a server, connecting to
Kafka via the Kafkajs library and send updates to the front-
end via the Socket.io library. Node.js is the best tool for this
job. It is free, open-sourced, and creates a JavaScript run-time
environment that enables server-side scripting6. It runs the
various libraries and frameworks needed for both the client
and server.

V. RESULTS

This section describes the findings that resulted from this
research. First, an examination is made of the class used to
store and interact with the producer data. Next, the method
of producer data retrieval is displayed. The user-facing aspect
of this tool is the dashboard, comprised of the informational
and graph visualizations. The source code of this tool is freely
available on GitHub7.

A. Data Storage

Data is collected by the Data Collection Server from two
different locations. The consumer and topic information is col-
lected via the KafkaJS Admin API. The producer information,
which is not stored within Kafka, is collected from secondary
producers.

The KafkaJS Admin API is relatively simple to work
with and utilize to gather data. The data gathered from the
Admin API is also relatively simple, specifically regarding the
consumers and topics. Because of its simplicity and relatively
static state, the data for those objects is simply stored in an
array. This array is passed to the client and iterated through
as necessary.

However, managing the producer information is more com-
plex than the topic and consumer data. Listing 1 shows how
the data is stored in a specific class with a couple of helpful
methods. Lines 3-7 show the attributes associated with this
class. Some have default initial values, like the produced
attribute (line 7). Others are passed in at the time of the

3https://kafka.js.org/
4https://socket.io/docs/v4/
5https://reactjs.org/
6https://nodejs.dev/
7https://github.com/MatthewLJensen/kafka-visualization

objects creation, like the topic and createdAt attributes (lines
5 and 6 respectively). Lines 15-17 show the setter method that
updates the lastUpdated attribute to the current time, as well
as increases the produced attribute’s value according to the
incoming data.

Listing 1. The structure and properties of a producer.

B. Secondary Producers

Secondary producers work to provide amortized data to the
Data Collection Server. Specifically, they provide data that is
sent in regular intervals as a summary of what occurred during
the interval to provide an overview of exactly what has been
occurring within the network in a robust and efficient manner.

This data is first recorded and updated whenever a producer
sends a message. This is accomplished by incrementing a
global variable that holds the number of messages produced by
that producer. Then, on an interval, a secondary producer sends
a trace message containing this value to the Data Collection
Server via an unmonitored topic. This topic is not monitored
by the tool because it is a component of the tool. Displaying
it to the user would likely only cause confusion.

Listing 2 presents the function that generates the aforemen-
tioned trace messages before they are sent. Specifically, line
6 shows how the number of produced messages is passed in
the body of the trace message. When received by the Data
Collection Server, this will be added to the associated producer
object. Lines 9-12 show that the producerId, startTime, and
topic are all passed in the Kafka header. These fields are used
to create the producer if it does not exist. Finally, on line 18,
the global variable holding the number of produced messages
since the last update is reset to 0.

Listing 3 shows how trace messages are received from
within the data collection server and stored within the producer



SOUTHERN ADVENTIST UNIVERSITY, SCHOOL OF COMPUTING, 2022 4

Listing 2. Secondary producer trace message output.

class (see Listing 1). Specifically, this listing presents the code
to create a consumer that receives metadata on a given topic.
It can be seen that a consumer is created (line 2), connected
to Kafka (line 4), subscribed to a topic (line 5), and a function
is defined that is called every time a message is received
(lines 6-24). Lines 8, 9, 13, and 17 show how the data from
the message (specifically the producerId, createdAt, topic, and
numProduced fields) are retrieved from the message body and
headers. They are then converted to a string format within the
same lines. Next, they are used to update the current state
of the producer in lines 18 and 19. Finally, line 22 emits
the change to the client, alerting them about a change in the
producers. This emit event is fired by the Socket.io library.

Listing 3. Creation a consumer that receives metadata on a given topic.

However, this arrangement presents a limitation. In order for
the tool to function properly, the Kafka architecture itself must
first be modified to provide the proper “hooks” for the server.
While not the most optimal solution, this approach served as

the most economical way to better understand the practical
aspects of building such a tool.

C. Dashboard

Two different visualization methods were combined to cre-
ate this dashboard. They have been linked together so that
information in one can easily be used to reference the other:

1) Informational visualization: Figure 2 shows the infor-
mation visualization that contains text information about each
producer, topic, and consumer. Each producer displays its
corresponding name, creation date, update date, number of
produced messages, and topic. Next, each topic is listed.
Finally, each consumer displays its corresponding name, group
id, and the topics it is subscribed to.

Fig. 2. The detail portion of the dashboard.

2) Graph visualization: The informational graph is useful
when a user is looking at a specific node. However, it lacks
the ability to provide a general understanding of the Kafka
architecture. The graph visualization in Figure 4 is designed
to display how the various parts of the specified Kafka
architecture relate to each other. The graph updates in real
time with the incoming data and is color coded to allow the
user to more easily differentiate between topics, producers,
and consumers. The producers are reddish pink, the topics
are yellow, and the consumers are green. The direction of the
arrows indicate what topics producers and consumers are either
producing on or subscribed too.

The two distinct visualizations are directly interconnected
within the tool. That is to say, selecting a node in either the
graph or dashboard will select the equivalent node within the
other visualization. This is to enable the user to easily highlight
nodes of interest regardless of whether they are looking at a
node in the detail view and are wanting to see how the node
relates to the rest of the network or whether the user is looking
at a node in the graph and wants to get more information
about it. Furthermore, when a user selects a topic node, the
tool displays the incoming messages from that topic live, as
shown in the bottom right of Figure 3. Each message will
only appear for a short amount of time before disappearing to
make space for newer incoming messages. There is currently
no way to view historical records of all received messages
within the tool. Figure 3 shows how the two visualizations are
connected and also demonstrates how incoming messages are



SOUTHERN ADVENTIST UNIVERSITY, SCHOOL OF COMPUTING, 2022 5

Fig. 3. The full view of the dashboard as presented to the user, including a preview of incoming messages on the right.

Fig. 4. Graph of an example Kafka architecture.

displayed in the bottom right. In this example the “locations”
topic is shown to be selected within the graph by the bolding
of its label and any connected arrows. Within the informational
visualization it is show to be selected by its yellow border.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented a Kafka architecture visualization tool.
Kafka is complex and difficult to properly configure. It can
be confusing to users unfamiliar with its design. Given this
complexity, this tool facilitates the visualization of Kafka
architecture to practitioners.

However, the complexity of Kafka’s APIs and the un-
derlying implementation itself made the development of the
dashboard difficult. The approach outlined in this research
work came with some limitations. First and foremost, the tool
developed is not “plug and play” for Kafka architectures. It
requires modification of the Kafka architecture to include the

aforementioned “secondary producers”. Future work in this
area would involve researching alternative methods for retriev-
ing information about producers. For architectures sending less
data, or where efficiency is not a priority, the Data Collection
Server could itself subscribe to all topics and retrieve most of
the pertinent information.

Another limitation involves gathering the flow of data
throughout the application. As it stands, there currently ex-
ists no efficient implemented manner of watching how data
flows from producers to consumers through the intermediary
nodes and topics. Future work could visualize data in more
dimensions that might show the user at a glance how data
is actively flowing through the application, rather than just
the architecture of the application and the status of its nodes.
While it appears possible to implement such functionality,
it would require careful research into the capabilities of the
KafkaJS Admin API. More specifically, it would require the
ability to carefully measure the flow of data through Kafka
nodes. This is a task which the API makes non-trivial.

This data visualization tool could be improved by adding
historical data. Future work could be invested in allowing a
user to browse through data collected in the past. This would
allow for better insights into how the architecture has behaved
over time. It could possibly help track down long-running
bottlenecks or other issues.

REFERENCES

[1] “Apache Kafka. Homepage.” [Online]. Available: https://kafka.apache.
org/

[2] H. Wu, “Research proposal: Reliability evaluation of the apache kafka
streaming system,” in 2019 IEEE International Symposium on Software
Reliability Engineering Workshops (ISSREW). Los Alamitos, CA, USA:
IEEE Computer Society, oct 2019, pp. 112–113. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/ISSREW.2019.00055

https://kafka.apache.org/
https://kafka.apache.org/
https://doi.ieeecomputersociety.org/10.1109/ISSREW.2019.00055


SOUTHERN ADVENTIST UNIVERSITY, SCHOOL OF COMPUTING, 2022 6

[3] “Apache Kafka. Powered By.” [Online]. Available: https://kafka.apache.
org/powered-by

[4] “SoftwareMill. Kafka Visualization.” [Online]. Available: https:
//softwaremill.com/kafka-visualisation/

[5] DB Solo, LLC, “Offset explorer.” [Online]. Available: https://kafkatool.
com/index.html

[6] J. Aurisano, J. Hwang, A. Johnson, L. Long, M. Crofoot, and T. Berger-
Wolf, “Bringing the field into the lab: Large-scale visualization of
animal movement trajectories within a virtual island,” in 2019 IEEE 9th
Symposium on Large Data Analysis and Visualization (LDAV), 2019, pp.
83–84.

[7] R. Moffatt, T. Berglund, “Kafka connect.” [Online]. Available:
https://developer.confluent.io/learn-kafka/kafka-connect/intro/

https://kafka.apache.org/powered-by
https://kafka.apache.org/powered-by
https://softwaremill.com/kafka-visualisation/
https://softwaremill.com/kafka-visualisation/
https://kafkatool.com/index.html
https://kafkatool.com/index.html
https://developer.confluent.io/learn-kafka/kafka-connect/intro/

	Introduction
	State of the Art
	Methodology
	Gathering Information and Planning
	Connecting to a Kafka Broker
	Setup a Testing Environment
	Retrieving the Pertinent Information
	Displaying the data

	Tool Architecture
	Results
	Data Storage
	Secondary Producers
	Dashboard
	Informational visualization
	Graph visualization


	Conclusions and Future Work
	References

