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Introduction 

Venom is of particular interest, not only for its medical impact in humans, but also for its 

therapeutic potential. Many publications have detailed the usage of venoms in treatments of 

various conditions, such as cancers and inflammation (Gomes, et al., 2010; Vyas, et al., 2013) as 

well as in current pharmaceutical research (Nunes et al., 2013). However, before venins can be 

analyzed for their therapeutic potentials, they must be extracted from their host. The choice of 

extraction technique is typically guided by animal size and ease of access to the venom glands 

(Besson et al., 2016; Hayes, et al., 2020). However, an issue emerges for small species, where it 

is difficult to extract large enough quantities of venom and/or where the extraction technique 

itself may influence venom composition or harm the animal. Therefore, investigative studies into 

venom extraction, specifically in a manner that maximizes both efficiency and animal safety, are 

of great importance (Tobassum et al., 2018). 

Venom can be obtained by different methods such as manual extraction, venom gland 

maceration, and electrical stimulation (Hayes, et al., 2020; Oukkache, et al., 2013). However, for 

smaller animals, such as venomous arthropods, electrical stimulation has emerged as the 

preferred extraction method, as it typically results in a greater venom collection and a lower 



percentage of impurities (Besson et al., 2016; Hayes, et al., 2020; Oukkache, et al., 2013; 

Tobassum et al., 2018).  

Some of the most studied arthropods venoms are those from the class Arachnida, 

specifically scorpions, ticks, and spiders, due to their medical relevance (Corderio, et al., 2015). 

However, most studies to date do not adequately describe their milking methods (reporting 

voltage or current but never both) or report any effects on the health of their specimens. Thus, 

there is a significant gap in our understanding of how to successfully milk venom from some 

arthropods while maintaining the health and wellbeing of the animals. 

In addition to how venom extraction affects arachnids, their venoms are known to vary in 

composition, and thus this is also vital to understand if we want to fully utilize these complex 

chemical cocktails as therapeutics or in the efficient treatment of envenomations. Differences in 

venom composition, and thus the abundance of certain compounds, is known to vary between 

sexes (Binford et al., 2016; Herzig et al., 2002), throughout ontogenesis (Barlow et al., 2009; 

Herzig, 2010), and across populations (De Sousa et al., 2010; Sentenská et al., 2017). Thus, 

disentangling how the venom extraction technique itself influences venom composition is vital to 

understand if we want to study how venoms vary naturally and in order to make antivenin that 

accurately and consistently reflect the natural composition of wild populations. 

  In choosing a model specimen to study electrical venom extraction, we believe arachnids, 

and more specifically scorpions, are an ideal candidate. Scorpions are a diverse group of around 

2,200 species that have a worldwide distribution and are usually abundant (Lourenco, 2018). 

Given their unique and memorable morphology, their venom has been relatively well studied 

(Tobassum et al., 2018). The venom contains many low molecular weight compounds of interest 

for the medical relevance and industrial therapeutic potential: including enzymes, peptides, 



phospholipases, mucoproteins, biogenic amines, and other substances capable of producing 

pathophysiological effects in victims  (Bringans et al., 2008; Santibáñez-López, 2015; Southard, 

2016; Tobassum et al., 2018). The Southern Devil Scorpion, Vaejovis carolinianus, is a member 

of the family Vaejovidae and is abundant in its home range of the lower Appalachian Mountain 

region of the United States, being particularly concentrated in Kentucky, Tennessee, Alabama, 

and Georgia (Kang and Brooks, 2017; Shelley and Sissom, 1995). We chose to use V. 

carolinianus due to our ability to collect a large sample size of both sexes, and its ease of care. 

In this study we investigated the effects of electrical milking on venom expression, body 

condition, and venom composition, as well as intersexual venom variation in V. carolinianus. 

 

Methods 

Scorpion Collection and Care 

We collected scorpions from the forest surrounding Southern Adventist University 

(35°02’57” N, 85°03’21W) from late August through early October (N = 104). Scorpions were 

housed individually in 16 oz (DeliPRO) containers with a mulch substrate (Miracle-Gro, All 

Purpose Garden Soil). We watered scorpions ad libitum and fed them one ⅜” house crickets 

(Acheta domestica) once every 2 weeks. 

 

Electrical Extraction of Venom 

Prior to venom extraction, scorpions were individually moved to 250 mL Narrow Mouth 

Erlenmeyer Flasks (Pyrex), in which CO2 was introduced before sealing the flask. We kept the 

scorpion in the container for approximately 10 minutes. We then restrained the scorpion between 

two foam pieces (dimensions of 2 x 2 in) secured by a rubber band (see Fig. 1). The method used 

for extraction of venom was electrical stimulation of the telson, following the method described 



by Yaqoob et al. (2008) with some modifications. Using featherweight forceps, immersed in a 

hypersaline solution, we electrically extracted venom by applying a 0.1 amp and 9-volt pulse 

(power = 0.9 watts) to the base of the telson until venom expulsion ceased. Expressed venom 

was collected in 5 uL capillary tubes with an internal diameter of 0.44 mm (Drummond, #1-000-

005). After each successful collection, the capillary tubes were placed within a 15 ml Falcon tube 

and continuously stored in a freezer (-20 °C). We labeled and used a unique falcon tube for each 

sex and extraction attempt (a total of six tubes). Each scorpion was milked a total of three times, 

with a 14-day interval between each milking to allow for venom regeneration. One group was 

permitted a 21-day regeneration time to examine the effects of a longer period for regeneration; 

the condition was later omitted as we could not distinguish between 14- and 21-day regeneration 

periods in our analysis (data not reported). 

 

 
 

 

Protein Quantification 

Figure 1. Restrained Metasoma and Electrified Forceps. 



We pooled venom samples to ensure that the protein concentration in each sample was 

within the detectable limits of our Agilent 1260 infinity series high-performance liquid 

chromatography (HPLC) instrument ne and to minimize background noise. Each sample 

analyzed contained venom from three individuals pooled into a 1.5 mL microcentrifuge tube 

(Eppendorf). As mentioned above, we attempted to collect venom from each scorpion three 

times with a 14-day regeneration period between venom extraction. In total, we analyzed six 

pooled samples from the first milking (e.g. female and male week 1A, 1B, 1C respectively) and 

six from the second milking (female and male week 2A, 2B, 2C respectively); however, due to 

the small number of males that released venom during the third milking attempt we only had 

enough for two pooled samples (female week 3A, 3B, 3C and males 3A and 3B). To create the 

pooled samples, we removed the capillary tubes containing the venom from the freezer and 

permitted them to thaw. We then used a microcapillary syringe (Drummond, model 3-000-752) 

to add the venom to 40 μL of HPLC running buffer A (described below). We centrifuged the 

microcentrifuge tubes at 13,200 rpm at 4° C for 60 seconds.  

We quantified protein concentration using a Thermo Fisher Scientific NanoDrop One 

Spectrometer measured at 280 nm following manufacturer's guidelines (Thermo Fisher 

Scientific, 2017). A drop of pure H2O was used as a blank between each protein quantification 

run. Once the protein concentration of each sample was determined, we diluted all pooled venom 

samples to the weakest sample’s concentration, so that each pooled sample had a known 

concentration of 2.380 mg/ml. The microcentrifuge tubes were then placed into a refrigerator (4° 

C) until they were run on HPLC. 

 

Chromatography 



We analyzed each sample with reverse-phase HPLC. Each chromatographic run 

consisted of a 15 μL sample solution loaded onto a ZORBAX 300SB-C8 3.5µm, (Agilent 3.0 x 

150 mm), Buffer A was 0.1% trifluoroacetic acid (TFA) in H2O and Buffer B was 0.1% TFA in 

acetonitrile. We used a flow rate of 1.5 mL/min at 40 °C. We washed hydrophilic components 

off the column by running an isocratic 0% B for two minutes, then we ran a shallow linear 

gradient from 0% to 55% B over 45 minutes, followed by a steeper gradient from 55% to 100% 

B over 15 minutes, and finally washed our column by holding at 100% B for an additional 10 

minutes. The total run time was 75 minutes.  

 

Statistical Analysis  

To compare the difference in venom expression following successive milkings, we ran a 

Generalized Mixed Model Omnibus test. Each week, we noted the presence/absence of damage 

of the aculeus and telson and the viability of each scorpion. Using this data, we ran a Log-rank 

test to determine if there was a difference in survival between sexes. Separation of the soluble 

venom components yielded many distinct peaks. We analyzed the chromatographic profiles and 

manually identified the most consistent peaks. We then used this peak list to identify the most 

representative chromatogram from each milking attempt and sex as our example chromatogram 

for subsequent comparisons. Using Agilent ChemStation, we qualitatively analyzed the samples 

for obvious changes in peak height and the presence and absence of peaks. This preliminary data 

was used to determine the effects of electrical venom extraction and sex on venom composition. 

 

Results  

Effects of Electrical Extraction on Venom Expression and Body Condition 



We noted a significant reduction in the total number of individuals that expressed venom 

throughout each successive milking (χ² = 36.63, p < 0.001, df =2, Fig. 2). We also observed 

damage to, or even the loss of, the aculeus in 11.5% of the scorpions (N = 12). Further, 20% of 

the individuals developed a “charred” appearance to their telson (N = 21).  We did not detect a 

significant difference in survival between sexes (z = 0.81, p = 0.416) over the course of this 

experiment. 

 

 

 

Effects of Electrical Extraction and Sex on Venom Composition 

We compared the effects of electrical venom extraction and sex on venom composition 

(Fig. 2-4). Our results indicate consecutive electrical extraction did not have any obvious effects 

on venom composition in either male (Fig. 3) or female (Fig. 4) V. carolinianus.  

Figure 2. Percent of Individuals that Expressed Venom 

Across Each Milking Attempt. 



 

 

 

 

 

 

However, we did observe consistent qualitative differences in retention times and peak height 

between sexes in several regions of the chromatograms (Fig. 5). 

Figure 3. Comparison of First (Blue) vs. Second Venom Milking (Red) in Males. 

Figure 4. Comparison of First (Red) vs. Second (Green) vs. Third Venom Milking 

(Blue) in females. 



 

 

 

 

 

Discussion 

In this study we investigated the effects of electrical milking on venom expression, body 

condition, venom composition, and intersexual venom variation in V. carolinianus. We observed 

variation in venom expression and body condition across successive milkings, we also observed 

differences in venom composition between the sexes. However, we did not observe variation in 

venom composition between successive milkings.  

 

Effects of Electrical Extraction on Venom Expression 

Although electrical venom extraction has been routinely used for honeybees (Owen, 

1978), centipedes (Cooper et al., 2014), spiders (Besson et al., 2016), scorpions (Yaqoob et al., 

2016), and snakes (McCleary & Heard, 2010), the effects of electrical venom extraction on 

venom expression are seldom reported; when they are, differences in how the expression is 

Figure 5. Comparison of Average Male (Red) vs. Average Female (Blue) Venom. 

Rectangles indicate regions where there were consistent differences in retention times 

and/or absorbance. 



measured can make comparisons challenging. Direct comparisons of rates of venom expulsion 

among different studies, and among different taxa, are also limited due to factors such as 

variation in testing methodologies, the species’ venom repletion rate, and amount of expulsed 

venom. Like similar studies (Bücherl, 1971; Candido and Lucas, 2004; Yaqoob et al., 2016), we 

noted that previously unmilked scorpions were the most likely to express venom and that the 

number of individuals that expressed venom on repeated milkings decreased through each 

milking attempt. 

While figure 2 shows a significant difference in the proportion of scorpions producing 

venom when compared to each milking attempt, we are unsure as to why a decrease in venom 

expression is occurring. It is possible that forced electrical extraction of venom damages the 

venom gland and therefore the number of individuals that express venom in subsequent milkings 

decreases; this is discussed in the following section. Or, it may be that scorpions can resist the 

forced expulsion of venom and, even though they have venom to give, i.e. electrical extraction is 

not sufficient to compel venom expression. This is anatomically demonstrated in centipedes 

(Cooper, 2014), which possess a mechanism involving a sphincter and nozzle-like non-return 

valve, that work together to regulate venom discharge from secretory cells.  Evidence of dry 

defensive stings of targets by Parabuthus transvaalicus (Nisani & Hayes, 2011) and Latrodectus 

hesperus (Nelsen et al., 2014) further support the likelihood of flexible venom expulsion. As we 

are unable to determine how electrical milking affected venom expulsion, our results, and those 

of previous studies detailing similar changes in venom expression, demand further 

investigations.  

 

Effects of Electrical Extraction on Body Condition 



 Of the commonly used venom extraction methods for smaller animals, electrical 

stimulation has proven to be the least traumatic (Li et al., 2013) and least likely to introduce 

contaminants when collecting (Besson et al., 2016; Hayes, et al., 2020; Li et al., 2013; 

Oukkache, et al., 2013; Tobassum et al., 2018). However, some investigators have proposed that 

electrical milking may damage the venom glands or venom gland musculature (Cooper et al., 

2014; Tobassum et al., 2018). Evidence of this has been observed among spiders, Argiope 

bruennichi quit expressing after one milking attempt (Friedel & Nentwig, 1989). Sissom et al. 

(1990) proposes this is also true in scorpions, whereas they can only be milked four times, on 

average, before gland muscles stop responding to electrical stimuli; likewise, Tobassum et al. 

(2018) observed this to occur after seven-eight consecutive extractions. In one instance, electrical 

milking proved fatal to the animal (Sahayaraj et al., 2006).  

Electrical extraction of venom has also resulted in changes to body condition, as reported 

in the centipede Scolopendra polymorpha, with some receiving blunted tarsungulum while others 

had no apparent injuries. Like similar studies, we noted observed changes in body condition, 

with damage or the removal of the aculeus in the scorpions. Imperfect placement of the aculeus 

within the capillary tube could result in the injury or fragmentation observed. Unlike other 

studies, we noted roughly a quarter of scorpions developing a “charred” appearance to the 

location where electric shock (0.9 watts) was applied. We suspect that this “charred” appearance 

may be dried hemolymph, and thus the extraction technique may have resulted enough damage 

around the telson to result in bleeding. However, more detailed observations are necessary to 

substantiate this hypothesis.  

In contrast to observations that link electrical extraction with changes in body condition, 

a few studies have reported repeated electrical milking did not produce permanent injuries 



immediately or within 2-3 weeks with scorpions (Gopalakrishnakone et al., 1995) and the 

scorpion Hadrurus arizonensis (Fox et al., 2009). Additionally, studies in the spider 

Coremiocnemis tropix (Herzig, 2010) and snake Agkistrodon piscivorus conanti (McCleary & 

Heard, 2010) also did not result in reduced venom expression or obvious changes in body 

condition. Thus, we need more information to determine if electrical milking technique can be 

modified to make it safe for the animal. However, this detailed information is currently lacking 

in the body of literature on this topic.  

Unfortunately, direct comparison of the effects of electrical stimulation on body 

condition between studies is limited: due to differing methodologies and as previous studies 

report voltage or current but never both. Additionally, other studies seldom report differences in 

survivorship between sexes, making our insignificant difference in survivorship challenging to 

compare. 

Presumably, and as proposed by Cooper et al. (2014), we believe that the potential for 

venom gland tissue, musculature, or exoskeleton damage increases with larger power, voltage-

current combinations, relative to body size and will vary depending on where the electrical 

stimulation is applied. Further, the time the animal is subjected to the shock may be an 

influencing factor. We believe investigations regarding changes in body conditions of males vs. 

females are also worthy of future studies; such investigations must consider the influences of 

their differing physiologies and size.  

Although consecutive electrical milking did not appear overly detrimental to V. 

carolinianus, further studies, preferably incorporating microscopic examinations of venom gland 

tissue, are necessary to determine the mechanisms by which electrical milking leads to the 

observed damaged and decrease in venom expression we and others have reported. 



 

Effect of electrical extraction on Venom Composition 

As mentioned above, electrical stimulation is a standard method for venom collection 

from scorpions (Candido and Lucas, 2004; Fox, 2018; Lowe and Farrell, 2011; Miller; De Sousa 

et al., 2010; Yaqoob et al., 2016) as well in other arachnid species (Besson et al., 2016; Garb, 

2014; Kristensen, 2008; Nagdalian et al., 2018). However, some have suggested that involuntary 

electrical extractions may damage the venom glands of scorpions and result in variations 

between compositional analyses (Stahnke, 1978; Yaqoob et al., 2016). Unlike similar studies, we 

did not note dramatic changes in venom composition across successive electrical extractions, 

performed at 14-day intervals. Although figures 3 and 4 show obvious differences in peak 

heights, we were not sure that these differences were reflective of changes due to electrical 

extraction or were more reflective of variation between samples/chromatographic runs. We 

observed variation between pooled venom samples within a given milk attempt, even though we 

used the same reagents, performed tests on the same day, and diluted samples to the same final 

protein concentration; this was true for both sexes. Therefore, we are not able to determine if and 

how electrical milking affected venom composition. However, due to the results of previous 

studies, and the ambiguous nature of our results, we believe that this topic desperately needs 

further investigation.  

 It is also important to note that venom regeneration in scorpions has been demonstrated 

to be asynchronous, with volume being regenerated first followed by protein content over time 

(Nisani et al., 2012; Pimenta et al., 2003). Although preliminary, our data implies a period of 14-

days may be sufficient for complete venom regeneration in this species.  

 

Effects of Sex on Venom Variation 



Sexual dimorphism in venom is observed in snakes (Furtado et al., 2006), scorpions 

(Sentenska et al., 2017), and spiders (Zobel-Thropp et al., 2018). Studies of arachnids have 

reported these variations to be differences in the abundance and of the presence/absence of 

specific venom components (Binford, 2001; Herzig and Hodgson, 2009). In the qualitative 

analysis of venom samples, we believe our results demonstrate intersexual differences in the 

venom composition of V. carolinianus; we hold this to be accurate, even given the variation 

observed between different samples from the same extraction attempt, as discussed above. 

Because of the run to run variation we observed between samples within a sex and milking 

attempt we limited our qualitative analysis to obvious presence/absence of peaks, and only the 

most consistent and obvious changes in peak height. We believe that the differences we found, as 

depicted in figure 5, showed greater between sex variation than within sex variation. Although 

we have yet to test this statistically, we are confident that further investigation will substantiate 

these differences and find additional differences we were too cautious to include.  

As V. carolinianus exhibits a marked sexual dimorphism (Southard, 2016), we may 

suggest an ad hoc explanation for the venom variation. It is tempting to propose that a smaller 

and potentially weaker male would require a more effective venom in defense against potential 

enemies or prey capture. Research by Miller (2016) demonstrates male venom as being more 

irritable when injected into a mouse’s paw; Miller (2016) further suggested the difference as 

resulting from a smaller body size necessitating greater venom efficiency. Further research into 

sex-related differences in venom production may be worthy of future investigations. 

The results of our qualitative analysis of the sexual dimorphism of venom demand further 

investigations into differences in venom gland morphology and genomic expression of V. 

carolinianus that may be responsible for the differences we observed. Additionally, inter- and 



intrasexual venom variation between juveniles and juveniles and adults may also be worthy of 

investigation. As we did not control for the age or mass of the scorpions tested, future studies can 

address these factors, before differences due to ontogeny occur (Barlow et al., 2009; Herzig, 

2010). 

Chemical Properties of Venom and its Potentials for Therapeutics 

Scorpion venom is a complex mixture of polypeptides, lipids, biogenic amines, 

nucleotides, mucoproteins, and other unclassified substances (Hmed et al., 2013). Of these, 

peptides standout due to their structural and functional diversity, leading to an array of biological 

functions when acting on mammalian cells (Ammar & Albalas, 2014; Hmed et al., 2013). 

Scorpion venom peptides are generally classified into two primary families (Ammar & Albalas, 

2014; Quintero-Hernández et al., 2015): disulfide-bridged peptides (DBPs), which typically act 

on membrane-bound ion channels (Ammar & Albalas, 2014), and non-disulfide-bridged peptides 

(NDBPs), which display multifunctional activities (Ammar & Albalas, 2014; Zeng et al., 2005).  

The NDBPs represent a smaller group, with only 40 identified peptides, that have only 

recently gained the interest of researchers; a large percentage of these peptide were functionally 

characterized within the previous decade (Ammar & Albalas, 2014; Hernández-Aponte et al., 

2011; Quintero-Hernández et al., 2015). Unlike DBPs, which exhibit conserved structure-

function relationships, NDBPs are structurally diverse and act on numerous targets (Ammar & 

Albalas, 2014). They are composed of 13-56 amino acid residues and display a broad diversity in 

sequences (Ammar & Albalas, 2014). As revealed either through Circular dichroism 

spectroscopy studies or by predictions of secondary structures from using bioinformatics, the 

majority of NDBPs exhibit a cationic amphipathic α-helical structure (Ammar & Albalas, 2014).  



Classification into one of three groups is based on the peptide’s structural conformation: 

presentation of a single α-helix domain and two random coiled regions at both C and N termini, 

two α-helix domains separated by a random coiled region, or 100% helicity. Nonetheless, a 

characteristic feature displayed by all NDPBs, is that all present unordered random coil 

conformations when placed in benign conditions, such as in aqueous solution. A transition, 

however, to solutions containing 50-60% aqueous trifluoroethanol and dodecylphosphocholine 

micelles, which mimic the membrane environment of cells, results in a rapid and dramatic 

conformational change to one of the cationic α-helical structures (Ammar & Albalas, 2014). It is 

this transitional behavior, observed in all studied NDBPs, that reflects their ability to interact 

with the anionic membrane of cellular targets (Ammar & Albalas, 2014). Further, the net 

positive charge (1-7 range) carried by the majority of NDBPs, which attracts them to the 

negatively charged phospholipid heads of the lipid membrane player of target cells by way of 

electrostatic interaction (Ammar & Albalas, 2014), heightens their ability to interact with cells. 

In the mammalian body, the NDBP family of scorpion peptides display a diverse range of 

activity; unlike DBPs, some even show multifunctional activities without regard to a specific 

cellular target (Ammar & Albalas, 2014). To date, NDBPs have been found to have hemolytic, 

anticancer, anti-inflammatory, and immune-modulatory properties (Ammar & Albalas, 2014). 

The majority of scorpion NDBPs, 37 out of 40, however, are grouped as antimicrobial peptides.  

One of these peptides, Vejovine, has been isolated from a species within the Vaejovis genus 

(Vaejovis mexicanus) (Hernández-Aponte et al., 2011; Sánchez-Vásquez et al., 2013). Vejovine 

exhibits antimicrobial properties with high specificity for prokaryotic membranes and a unique 

membrane-disrupting mechanism (Hernández-Aponte et al., 2011). It has been demonstrated to 

inhibit the growth of several gram-negative multidrug-resistant bacteria known for nosocomial, 



or hospital-acquired, infections (Acinetobacter baumanii, Escherichia coli, Enterobacter 

cloacae, Pseudomonas aeruginosa, and Klebsiella pneumoniae) (Hernández-Aponte et al., 2011; 

Samy et al., 2017). 

As shown, scorpion non-disulfide bridged proteins exhibit unique conformational 

behavior that highlights their potential to be used for therapeutics (Ammar & Albalas, 2014; 

Hernández-Aponte et al., 2011; Quintero-Hernández et al., 2015; Sánchez-Vásquez et al., 2013). 

It is our opinion that further research should explore scorpion venoms as new sources for 

potential antimicrobial and broad-spectrum peptides; these agents may constitute important tools 

in drug discovery or serve as templates for drug design and development of new therapeutic 

agents. 

 

Conclusion  

Although preliminary, our study strongly suggests that electrical extraction resulted in 

decreased venom expression and changes in body condition in Vaejovis carolinianus. We could 

not confidently determine if/how electrical extraction affected venom composition; however, we 

believe that intersexual variations in venom composition is present in this species and will be 

supported by future investigations.  
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