Alférez Salinas, Germán Harvey

Document Type


Publication Date

Spring 4-28-2023


Microfossil dinosaur teeth are studied by paleontologists in order to better under- stand dinosaurs. Currently, tooth classification is a long, manual, error-ridden process. Deep learning offers a solution that allows for an automated way of classifying images of these microfossil teeth. In this thesis, we aimed to use deep learning in order to develop an automated approach for classifying images of Pectinodon bakkeri teeth. The proposed model was trained using a custom topology and it classified the images based on clusters created via K-Means. The model had an accuracy of 71%, a precision of 71%, a recall of 70.5%, and an F1-score of 70.5%.