Presentation Type
Oral Presentation
Mentor/Supervising Professor Name
Alférez, Harvey
Presentation Location
On Campus
Description
This paper is a proposed solution to the problem of memory safety using machine learning. Memory overload and corruption cause undesirable behaviors in a system that are addressed by memory safety implementations. This project uses machine learning models to classify different states of system memory from a dataset collected from a Raspberry Pi System. These models can then be used to classify real run time memory data and increase memory safety overall in a system.
Optimization of Memory Management Using Machine Learning
On Campus
This paper is a proposed solution to the problem of memory safety using machine learning. Memory overload and corruption cause undesirable behaviors in a system that are addressed by memory safety implementations. This project uses machine learning models to classify different states of system memory from a dataset collected from a Raspberry Pi System. These models can then be used to classify real run time memory data and increase memory safety overall in a system.