Presentation Type
Oral Presentation
Mentor/Supervising Professor Name
Andrianarijaona, Vola
Description
The potential energy surfaces of atoms in DNA can be analyzed and compared to show how their bonds break. This DNA potential energy reference data is very useful to understanding how DNA damage occurs, however, a dataset of relevant potential energy surfaces is not available for scientific use. We obtain the potential energy surfaces of various atoms in the four DNA bases adenine, thymine, guanine, and cytosine, by moving an atom in these molecules in three orthogonal directions using ORCA, an ab initio quantum chemistry software. Density functional theory is
used to compute potential energies as an atom is moved, and this data is compiled into a useful three-dimensional surface for experimental application.
An Ab Initio Computation of the Potential Energy Surfaces of the DNA Bases
On Campus
The potential energy surfaces of atoms in DNA can be analyzed and compared to show how their bonds break. This DNA potential energy reference data is very useful to understanding how DNA damage occurs, however, a dataset of relevant potential energy surfaces is not available for scientific use. We obtain the potential energy surfaces of various atoms in the four DNA bases adenine, thymine, guanine, and cytosine, by moving an atom in these molecules in three orthogonal directions using ORCA, an ab initio quantum chemistry software. Density functional theory is
used to compute potential energies as an atom is moved, and this data is compiled into a useful three-dimensional surface for experimental application.